Machine Learning-Assisted Statistical Variation Analysis of Ferroelectric Transistor: From Experimental Metrology to Adaptive Modeling

被引:9
作者
Choe, Gihun [1 ]
Ravindran, Prasanna Venkatesan [1 ]
Hur, Jae [1 ]
Lederer, Maximilian [2 ]
Reck, Andre [2 ]
Khan, Asif [1 ]
Yu, Shimeng [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Fraunhofer IPMS, D-01109 Dresden, Germany
关键词
FeFETs; Neural networks; Iron; Training; Silicon-on-insulator; Computational modeling; Transistors; Ferroelectric (FE) transistor; machine learning (ML); neural network; technology-computer-aided-design (TCAD); transfer learning (TL); variation; VARIABILITY; FUTURE; IMPACT;
D O I
10.1109/TED.2023.3244764
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel machine learning (ML)-assisted approach is proposed for investigating the variability of ferroelectric field-effect transistor (FeFET) to shorten the loop of technology pathfinding. To quantify the ferroelectric (FE) domain variation, the atomic intragranular misorientation of Si-doped HfO2 thin film is measured by transmission Kikuchi diffraction (TKD) and is transformed into a polarization map. With the metrology data, polarization variation (PV) of FE domains on the gate-stack is modeled in technology computer-aided design (TCAD) to assess the impact of PV on the FeFET performance and to obtain datasets for ML-assisted analysis. A neural network model is trained using the datasets (input: polarization maps; output: high/low threshold voltage, ON-state current, and subthreshold slope) for the 28-nm bulk FeFET analysis. Our trained network, if used for inference to obtain three-sigma statistics, shows > 98% of accuracy of the device features and significantly faster simulation time than TCAD. In addition, we used the transfer learning technique to reduce the number of training datasets by 83% for the fully depleted silicon-on-insulator (FDSOI) FeFET by applying the pretrained model from the bulk FeFET.
引用
收藏
页码:2015 / 2020
页数:6
相关论文
共 18 条
[1]  
[Anonymous], 2017, SentaurusDevice User Guide
[2]  
Choe G., 2022, IEEE S VLSI TECHN CI, P336, DOI 10.1109/VLSITechnologyandCir46769.2022.9830392
[3]   Variability Study of Ferroelectric Field-Effect Transistors Towards 7nm Technology Node [J].
Choe, Gihun ;
Yu, Shimeng .
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2021, 9 :1131-1136
[4]  
Dünkel S, 2017, INT EL DEVICES MEET
[5]   Impact of Random Spatial Fluctuation in Non-Uniform Crystalline Phases on the Device Variation of Ferroelectric FET [J].
Garg, Chirag ;
Chauhan, Nitanshu ;
Deng, Shan ;
Khan, Asif Islam ;
Dasgupta, Sudeb ;
Bulusu, Anand ;
Ni, Kai .
IEEE ELECTRON DEVICE LETTERS, 2021, 42 (08) :1160-1163
[6]   Bridging TCAD and AI: Its Application to Semiconductor Design [J].
Jeong, Changwook ;
Myung, Sanghoon ;
Huh, In ;
Choi, Byungseon ;
Kim, Jinwoo ;
Jang, Hyunjae ;
Lee, Hojoon ;
Park, Daeyoung ;
Lee, Kyuhun ;
Jang, Wonik ;
Ryu, Jisu ;
Cha, Moon-Hyun ;
Choe, Jae Myung ;
Shim, Munbo ;
Kim, Dae Sin .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (11) :5364-5371
[7]   Deep-Learning-Assisted Physics-Driven MOSFET Current-Voltage Modeling [J].
Kao, Ming-Yen ;
Kam, H. ;
Hu, Chenming .
IEEE ELECTRON DEVICE LETTERS, 2022, 43 (06) :974-977
[8]   The future of ferroelectric field-effect transistor technology [J].
Khan, Asif Islam ;
Keshavarzi, Ali ;
Datta, Suman .
NATURE ELECTRONICS, 2020, 3 (10) :588-597
[9]   Impact of the SiO2 interface layer on the crystallographic texture of ferroelectric hafnium oxide [J].
Lederer, M. ;
Reck, A. ;
Mertens, K. ;
Olivo, R. ;
Bagul, P. ;
Kia, A. ;
Volkmann, B. ;
Kaempfe, T. ;
Seidel, K. ;
Eng, L. M. .
APPLIED PHYSICS LETTERS, 2021, 118 (01)
[10]   Local crystallographic phase detection and texture mapping in ferroelectric Zr doped HfO2 films by transmission-EBSD [J].
Lederer, M. ;
Kaempfe, T. ;
Olivo, R. ;
Lehninger, D. ;
Mart, C. ;
Kirbach, S. ;
Ali, T. ;
Polakowski, P. ;
Roy, L. ;
Seidel, K. .
APPLIED PHYSICS LETTERS, 2019, 115 (22)