Blow-up criteria for coupled nonlinear Schodinger equations

被引:0
作者
Bai, Qianqian [1 ,2 ]
Li, Xiaoguang [1 ,2 ]
Zhang, Jian [3 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu, Peoples R China
[2] Sichuan Normal Univ, VC & VR Key Lab, Chengdu, Peoples R China
[3] Univ Elect Sci & Technol China Chengdu, Sch Math Sci, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
Coupled nonlinear Schrodinger equations; ground states; blow-up; LINEAR SCHRODINGER-EQUATIONS; CAUCHY-PROBLEM;
D O I
10.1080/00036811.2021.1965584
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the blw-up problem of a system of two coupled nonlinear focusing Schrodinger equations. By using localized virial estimates, we establish a blow-up criteria for non-radial solutions without the hypothesis of finite variance.
引用
收藏
页码:830 / 838
页数:9
相关论文
共 19 条
[1]   Wave collapse in physics: principles and applications to light and plasma waves [J].
Berge, L .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 303 (5-6) :259-370
[2]   Blow-up profile to the solutions of two-coupled Schrodinger equations [J].
Chen, Jianqing ;
Guo, Boling .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (02)
[3]   ON BLOW-UP CRITERION FOR THE NONLINEAR SCHRODINGER EQUATION [J].
Du, Dapeng ;
Wu, Yifei ;
Zhang, Kaijun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) :3639-3650
[4]   On the blow-up threshold for weakly coupled nonlinear Schrodinger equations [J].
Fanelli, Luca ;
Montefusco, Eugenio .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (47) :14139-14150
[5]   On the blow-up solutions for the nonlinear Schrodinger equation with combined power-type nonlinearities [J].
Feng, Binhua .
JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (01) :203-220
[6]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .2. SCATTERING THEORY, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :33-71
[7]   BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS [J].
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1794-1797
[8]  
Guo Q, 2013, P AM MATH SOC, V141, P4215
[9]   Divergence of Infinite-Variance Nonradial Solutions to the 3D NLS Equation [J].
Holmer, Justin ;
Roudenko, Svetlana .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (05) :878-905
[10]   A sharp threshold of blow-up for coupled nonlinear Schrodinger equations [J].
Li, Xiaoguang ;
Wu, Yonghong ;
Lai, Shaoyong .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (16)