Direct growth of hierarchically Ni3S2 nanostructures on nickel foam for enhanced hydrogen evolution reaction

被引:0
|
作者
Zhong, Xiaokang [1 ]
Ali, Mure [2 ]
Wang, Xiuting [3 ]
Lu, Wanxin [2 ]
Yong, Kangle [4 ]
Feng, Delong [4 ]
Zhou, Yun [4 ,5 ]
Xu, Jie [4 ]
机构
[1] Southwest Med Univ, Sch Phys Educ, Luzhou 646000, Peoples R China
[2] Southwest Med Univ, Sch Clin Med, Luzhou 646000, Peoples R China
[3] Luzhou Vocat & Tech Coll, Coll Intelligent Mfg & Automot Engn, Luzhou 646000, Peoples R China
[4] Southwest Med Univ, Sch Med Informat & Engn, Luzhou 646000, Peoples R China
[5] Xi An Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
来源
INDIAN JOURNAL OF CHEMISTRY | 2024年 / 63卷 / 01期
关键词
Metallic compounds; Hierarchically; Dimensional confinement; Hydrogen evolution reaction; EFFICIENT; ELECTROCATALYST; NANOSHEETS; ARRAYS; OXYGEN;
D O I
10.56042/ijc.v63i1.7908
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Hydrogen is not only a promising energy, but also widely used in inflammation treatment and sports training. The key to these applications is to obtain pure hydrogen conveniently. Water electrolysis provides a green and sustainable method for hydrogen production, but the urgent problem is to develop low-cost and efficient electrocatalysts. In this work, hierarchically porous Ni3S2 nanostructures, which the flocculent two-dimensional Ni3S2 is coated on the surface of Ni3S2 nanosheets, have been successfully grown on nickel foam through a facile two-step hydrothermal reaction. The hierarchically porous Ni3S2 nanostructures has a large specific surface area can expose more active sites and facilitates desorption of bubbles. Moreover, the theoretical calculation has indicated that the dimensional confinement effect of metallic Ni3S2 improves the carrier concentration and conductivity. Therefore, the hierarchically porous Ni3S2 nanostructures on nickel foam have exhibited enhanced hydrogen evolution reaction and good catalytic stability. This work sheds some light on improving the catalytic performance of metallic compounds.
引用
收藏
页码:105 / 111
页数:7
相关论文
共 50 条
  • [1] The effect of urea on microstructures of Ni3S2 on nickel foam and its hydrogen evolution reaction
    Lv Jinlong
    Liang Tongxiang
    JOURNAL OF SOLID STATE CHEMISTRY, 2016, 243 : 106 - 110
  • [2] Hierarchically Porous Ni3S2 Nanorod Array Foam as Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction and Oxygen Evolution Reaction
    Ouyang, Canbin
    Wang, Xin
    Wang, Chen
    Zhang, Xiaoxu
    Wu, Jianghong
    Ma, Zhaoling
    Dou, Shuo
    Wang, Shuangyin
    ELECTROCHIMICA ACTA, 2015, 174 : 297 - 301
  • [3] Morphology controlled synthesis of 2-D Ni–Ni3S2 and Ni3S2 nanostructures on Ni foam towards oxygen evolution reaction
    Nitin Kaduba Chaudhari
    Aram Oh
    Young Jin Sa
    Haneul Jin
    Hionsuck Baik
    Sang Gu Kim
    Suk Joong Lee
    Sang Hoon Joo
    Kwangyeol Lee
    Nano Convergence, 4
  • [4] Synthesis of Ni3S2 nanotube arrays on nickel foam by catalysis of thermal reduced graphene for hydrogen evolution reaction
    Lv Jinlong
    Miura, Hideo
    Yang Meng
    Liang Tongxiang
    APPLIED SURFACE SCIENCE, 2017, 399 : 769 - 774
  • [5] Direct Growth of 3D Hierarchical Porous Ni3S2 Nanostructures on Nickel Foam for High-Performance Supercapacitors
    Yilmaz, Gamze
    Lu, Xianmao
    CHEMNANOMAT, 2016, 2 (07): : 719 - 725
  • [6] Construction of NiCo2S4/Ni3S2 nanoarrays on Ni foam substrate as an enhanced electrode for hydrogen evolution reaction and supercapacitors
    Xu, Xiaobing
    Liu, Qiang
    Zhong, Wei
    Zhang, Lei
    Lu, Yuzheng
    Du, Youwei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (79) : 39226 - 39235
  • [7] MoOxSy/Ni3S2 Microspheres on Ni Foam as Highly Efficient, Durable Electrocatalysts for Hydrogen Evolution Reaction
    Yu, Zihuan
    Yao, Huiqin
    Yang, Yan
    Yuan, Mengwei
    Li, Cheng
    He, Haiying
    Chan, Ting-Shan
    Yan, Dongpeng
    Ma, Shulan
    Zapol, Peter
    Kanatzidis, Mercouri G.
    CHEMISTRY OF MATERIALS, 2022, 34 (02) : 798 - 808
  • [8] Morphology controlled synthesis of 2-D Ni-Ni3S2 and Ni3S2 nanostructures on Ni foam towards oxygen evolution reaction
    Chaudhari, Nitin Kaduba
    Oh, Aram
    Sa, Young Jin
    Jin, Haneul
    Baik, Hionsuck
    Kim, Sang Gu
    Lee, Suk Joong
    Joo, Sang Hoon
    Lee, Kwangyeol
    NANO CONVERGENCE, 2017, 4
  • [9] Facile synthesis of Ni3S2/rGO nanosheets composite on nickel foam as efficient electrocatalyst for hydrogen evolution reaction in alkaline media
    He, Binhong
    Zhou, Minjie
    Hou, Zhaohui
    Li, Gangyong
    Kuang, Yafei
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (05) : 519 - 527
  • [10] Facile synthesis of Ni3S2/rGO nanosheets composite on nickel foam as efficient electrocatalyst for hydrogen evolution reaction in alkaline media
    Binhong He
    Minjie Zhou
    Zhaohui Hou
    Gangyong Li
    Yafei Kuang
    Journal of Materials Research, 2018, 33 : 519 - 527