Energy Management in Modern Buildings Based on Demand Prediction and Machine Learning-A Review

被引:4
|
作者
Moghimi, Seyed Morteza [1 ]
Gulliver, Thomas Aaron [1 ]
Thirumai Chelvan, Ilamparithi [1 ]
机构
[1] Univ Victoria, Dept Elect & Comp Engn, STN CSC, POB 1700, Victoria, BC V8W 2Y2, Canada
基金
英国科研创新办公室;
关键词
demand response; energy flexibility; green buildings; machine learning; optimization; smart buildings; SMART BUILDINGS; DATA-DRIVEN; LOAD; CONSUMPTION; SYSTEM; CLASSIFICATION; REGRESSION; NETWORK;
D O I
10.3390/en17030555
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Increasing building energy consumption has led to environmental and economic issues. Energy demand prediction (DP) aims to reduce energy use. Machine learning (ML) methods have been used to improve building energy consumption, but not all have performed well in terms of accuracy and efficiency. In this paper, these methods are examined and evaluated for modern building (MB) DP.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Machine learning based energy demand prediction
    Kamoona, Ammar
    Song, Hui
    Keshavarzian, Kian
    Levy, Kedem
    Jalili, Mahdi
    Wilkinson, Richardt
    Yu, Xinghuo
    McGrath, Brendan
    Meegahapola, Lasantha
    ENERGY REPORTS, 2023, 9 : 171 - 176
  • [2] Machine learning and deep learning-A review for ecologists
    Pichler, Maximilian
    Hartig, Florian
    METHODS IN ECOLOGY AND EVOLUTION, 2023, 14 (04): : 994 - 1016
  • [3] Predicting Heating Load in Energy-Efficient Buildings Through Machine Learning Techniques
    Moayedi, Hossein
    Dieu Tien Bui
    Dounis, Anastasios
    Lyu, Zongjie
    Foong, Loke Kok
    APPLIED SCIENCES-BASEL, 2019, 9 (20):
  • [4] Machine learning for energy performance prediction at the design stage of buildings
    Olu-Ajayi, Razak
    Alaka, Hafiz
    Sulaimon, Ismail
    Sunmola, Funlade
    Ajayi, Saheed
    ENERGY FOR SUSTAINABLE DEVELOPMENT, 2022, 66 : 12 - 25
  • [5] A novel energy demand prediction strategy for residential buildings based on ensemble learning
    Huang, Yao
    Yuan, Yue
    Chen, Huanxin
    Wang, Jiangyu
    Guo, Yabin
    Ahmad, Tanveer
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 3411 - 3416
  • [6] Machine Learning for Smart and Energy-Efficient Buildings
    Das, Hari Prasanna
    Lin, Yu-Wen
    Agwan, Utkarsha
    Spangher, Lucas
    Devonport, Alex
    Yang, Yu
    Drgona, Jan
    Chong, Adrian
    Schiavon, Stefano
    Spanos, Costas J.
    ENVIRONMENTAL DATA SCIENCE, 2024, 3
  • [7] Energy consumption prediction and energy-saving suggestions of public buildings based on machine learning
    Chen, Cheng
    Gao, Zhiming
    Zhou, Xuan
    Wang, Miao
    Yan, Junwei
    ENERGY AND BUILDINGS, 2024, 320
  • [8] Prediction of Energy Efficiency for Residential Buildings Using Supervised Machine Learning Algorithms
    Mahmood, Tahir
    Asif, Muhammad
    ENERGIES, 2024, 17 (19)
  • [9] A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation
    Elsisi, Mahmoud
    Amer, Mohammed
    Dababat, Alya
    Su, Chun-Lien
    ENERGY, 2023, 281
  • [10] Machine learning for energy consumption prediction and scheduling in smart buildings
    Bourhnane, Safae
    Abid, Mohamed Riduan
    Lghoul, Rachid
    Zine-Dine, Khalid
    Elkamoun, Najib
    Benhaddou, Driss
    SN APPLIED SCIENCES, 2020, 2 (02):