A Measure of Semantic Class Difference of Point Reprojection Pairs in Camera Pose Estimation

被引:3
作者
Kang, Jaehyeon [1 ]
Nam, Changjoo [2 ]
机构
[1] Korea Inst Ind Technol, Dept AI Robot R&D, Ansan 15588, Gyeonggi, South Korea
[2] Sogang Univ, Dept Elect Engn, Seoul 04107, South Korea
基金
新加坡国家研究基金会;
关键词
Camera pose; normalized information distance (NID); semantic error; visual odometry (VO); visual simultaneous localization and mapping (VSLAM); OPTIMIZATION;
D O I
10.1109/TII.2023.3258443
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we propose a new measure that evaluates the semantic errors of camera poses in visual odometry (VO) and visual simultaneous localization and mapping (VSLAM). Traditionally, VO/VSLAM methods have used photometric images to estimate camera poses, but they suffer from varying illumination and viewpoint changes. Thus, methods using semantic images have been an alternative to increase consistency, as semantic information has shown its robustness even in hostile environments. Our measure compares semantic classes of map point reprojection pairs between images to improve the camera pose estimation accuracy in VO/VSLAM. To evaluate the difference between semantic classes, we adopt the normalized information distance from information theory. Furthermore, we suggest a weight parameter to balance the existing error of VO/VSLAM with the semantic error introduced by our approach. Our experimental results, obtained from the VKITTI and KITTI benchmark datasets, show that the proposed semantic error measure reduces both the relative pose error and absolute trajectory error of camera pose estimation compared to the existing photometric image-based errors of indirect and direct VO/VSLAM.
引用
收藏
页码:201 / 212
页数:12
相关论文
共 36 条
[1]  
Alismail Hatem., 2016, Direct Visual Odometry Using Bit-Planes
[2]  
[Anonymous], 2016, Revised Selected Papers
[3]  
[Anonymous], Ceres Solver
[4]  
Barfoot T. D., 2017, State estimation for robotics, V1st, P265, DOI 10.1017/9781316671528
[5]   DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes [J].
Bescos, Berta ;
Facil, Jose M. ;
Civera, Javier ;
Neira, Jose .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04) :4076-4083
[6]  
Bowman Sean L., 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA), P1722, DOI 10.1109/ICRA.2017.7989203
[7]  
Cabon Y., 2020, Virtual kitti 2
[8]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[9]   Restricted Deformable Convolution-Based Road Scene Semantic Segmentation Using Surround View Cameras [J].
Deng, Liuyuan ;
Yang, Ming ;
Li, Hao ;
Li, Tianyi ;
Hu, Bing ;
Wang, Chunxiang .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (10) :4350-4362
[10]  
Doherty KJ, 2020, IEEE INT CONF ROBOT, P1098, DOI [10.1109/icra40945.2020.9197382, 10.1109/ICRA40945.2020.9197382]