Polymethylhydrosiloxane-modified gas-diffusion cathode for more efficient and durable H2O2 electrosynthesis in the context of water treatment

被引:27
作者
Xia, Pan [1 ]
Zhao, Lele [2 ]
Chen, Xi [1 ]
Ye, Zhihong [1 ]
Zheng, Zhihong [1 ]
He, Qiang [1 ]
Sires, Ignasi [2 ]
机构
[1] Chongqing Univ, Coll Environm & Ecol, Key Lab Ecoenvironm Three Gorges Reservoir Reg, Minist Educ, Chongqing 400045, Peoples R China
[2] Univ Barcelona, Lab Electroquim Mat & Medi Ambient, Dept Ciencia Mat & Quim Fis, Seccio Quim Fis,Fac Quim, Marti i Franques 1-11, Barcelona 08028, Spain
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2024年 / 343卷
基金
中国国家自然科学基金;
关键词
Electro-Fenton process; Gas -diffusion electrode; Electrocatalytic hydrogen peroxide synthesis; Oxygen reduction reaction; Siloxane; ELECTRO-FENTON; GRAPHITE FELT; GENERATION; CARBON; ELECTROGENERATION;
D O I
10.1016/j.apcatb.2023.123467
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
On-site H2O2 electrosynthesis via two-electron oxygen reduction reaction (ORR) is attracting great interest for water treatment. The use of carbon black-based gas-diffusion electrodes (GDEs) is especially appealing, but their activity, selectivity and long-term stability must be improved. Here, a facile GDEs modification strategy using trace polymethylhydrosiloxane (PMHS) allowed reaching a outstanding H2O2 production, outperforming the conventional polytetrafluoroethylene (PTFE)-GDE (1874.8 vs 1087.4 mg L-1 at 360 min). The superhydrophobicity conferred by PMHS endowed the catalytic layer with high faradaic efficiencies (76.2%-89.7%) during long-term operation for 60 h. The electrochemical tests confirmed the high activity and selectivity of the PMHS-modified GDE. Moreover, the efficient degradation of several micropollutants by the electro-Fenton process demonstrated the great potential of the new GDE. An in-depth understanding of the roles of PMHS functional groups is provided from DFT calculations: the -CH3 groups contribute to form a superhydrophobic interface, whereas Si-H and as-formed Si-O-C sites modulate the coordination environment of active carbon centers.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Electrosynthesis of H2O2 from O2 in Gas Diffusion Electrodes Based on Black CH600 [J].
Kornienko, V. L. ;
Kolyagin, G. A. ;
Kornienko, G. V. ;
Parfenov, V. A. ;
Petin, A. A. .
RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2017, 53 (12) :1307-1313
[22]   Upgrading waste tire to a carbon-based natural gas diffusion electrode for efficient H2O2 production [J].
Wang, Jingwen ;
Li, Chaolin ;
Rauf, Muhammad ;
Wang, Wenhui .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (03)
[23]   Enhancing H2O2 production with a self-breathing gas diffusion electrode fabricated via ultrasonic impregnation and vacuum filtration [J].
Zhang, Zilong ;
Qin, Xia ;
Xu, Cuicui ;
Zhang, Fanbin ;
Liu, Xinrui ;
Yang, Yumei .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 962
[24]   A Protocol for Electrocatalyst Stability Evaluation: H2O2 Electrosynthesis for Industrial Wastewater Treatment [J].
Kim, David J. ;
Zhu, Qianhong ;
Rigby, Kali ;
Wu, Xuanhao ;
Kim, Jin Hyun ;
Kim, Jae-Hong .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (02) :1365-1375
[25]   pH Effects on Electrocatalytic H2O2 Production and Flooding in Gas-Diffusion Electrodes for Oxygen Reduction Reaction [J].
Okazaki, Takuya ;
Shibata, Kento ;
Tateishi, Chihiro ;
Enomoto, Kazuma ;
Beppu, Kosuke ;
Amano, Fumiaki .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (26) :9856-9863
[26]   Selective and durable H2O2 electrosynthesis catalyst in acid by selenization induced straining and phasing [J].
Yu, Zhiyong ;
Deng, Hao ;
Yao, Qing ;
Zhao, Liangqun ;
Xue, Fei ;
He, Tianou ;
Hu, Zhiwei ;
Huang, Wei-Hsiang ;
Pao, Chih-Wen ;
Yang, Li-Ming ;
Huang, Xiaoqing .
NATURE COMMUNICATIONS, 2024, 15 (01)
[27]   Thermoplasmonic In Situ Fabrication of Nanohybrid Electrocatalysts over Gas Diffusion Electrodes for Enhanced H2O2 Electrosynthesis [J].
Zhang, Yu ;
Mascaretti, Luca ;
Melchionna, Michele ;
Henrotte, Olivier ;
Kment, Stepan ;
Fornasiero, Paolo ;
Naldoni, Alberto .
ACS CATALYSIS, 2023, 13 (15) :10205-10216
[28]   Electrochemical advanced oxidation processes using PbO2 anode and H2O2 electrosynthesis cathode for wastewater treatment [J].
Wei, Jucai ;
Liu, Yun ;
Wu, Xu .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 178 :444-455
[29]   Using black carbon modified with NbMo and NbPd oxide nanoparticles for the improvement of H2O2 electrosynthesis [J].
Trevelin, L. C. ;
Valim, R. B. ;
Carneiro, J. F. ;
De Siervo, A. ;
Rocha, R. S. ;
Lanza, M. R., V .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 877
[30]   Rational Design of Metal-free Doped Carbon Nanohorn Catalysts for Efficient Electrosynthesis of H2O2 from O2 Reduction [J].
Chakthranont, Pongkarn ;
Nitrathorn, Sakvarit ;
Thongratkaew, Sutarat ;
Khemthong, Pongtanawat ;
Nakajima, Hideki ;
Supruangnet, Ratchadaporn ;
Butburee, Teera ;
Sano, Noriaki ;
Faungnawakij, Kajornsak .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (11) :12436-12447