Stability of hypercontractivity, the logarithmic Sobolev inequality, and Talagrand's cost inequality

被引:3
作者
Bez, Neal [1 ]
Nakamura, Shohei [2 ]
Tsuji, Hiroshi [2 ]
机构
[1] Saitama Univ, Grad Sch Sci & Engn, Dept Math, Saitama 3388570, Japan
[2] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
Hypercontractivity; Logarithmic Sobolev inequality; Talagrand's inequality; Fokker-Planck equation; VISCOSITY SOLUTIONS; BRUNN-MINKOWSKI; BRASCAMP-LIEB; TRANSPORT; DEFICIT; THEOREMS; BOUNDS;
D O I
10.1016/j.jfa.2023.110121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide deficit estimates for Nelson's hypercontractivity inequality, the logarithmic Sobolev inequality, and Talagrand's transportation cost inequality under the restriction that the inputs are semi-log-subharmonic, semi-log-convex, or semi log-concave. In particular, our result on the logarithmic Sobolev inequality complements a recently obtained result by Eldan, Lehec and Shenfeld concerning a deficit estimate for inputs with small covariance. Similarly, our result on Talagrand's transportation cost inequality complements and, for a large class of semi-log-concave inputs, improves a deficit estimate recently proved by Mikulincer. Our deficit estimates for hypercontractivity will be obtained by using a flow monotonicity scheme built on the Fokker-Planck equation, and our deficit estimates for the logarithmic Sobolev inequality will be derived as a corollary. For Talagrand's inequality, we use an optimal transportation argument. An appealing feature of our framework is robustness and this allows us to derive deficit estimates for the hypercontracivity inequality associated with the Hamilton-Jacobi equation, the Poincare inequality, and for Beckner's inequality. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:66
相关论文
共 67 条
[1]  
Alvarez O, 1999, INDIANA U MATH J, V48, P993
[2]   A supersolutions perspective on hypercontractivity [J].
Aoki, Yosuke ;
Bennett, Jonathan ;
Bez, Neal ;
Machihara, Shuji ;
Matsuura, Kosuke ;
Shiraki, Shobu .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (05) :2105-2116
[3]   Analysis and geometry of Markov diffusion operators [J].
Applebaum, David .
MATHEMATICAL GAZETTE, 2016, 100 (548) :372-+
[4]  
Bakry D., 1985, Seminaire de probabilites de Strasbourg, P177
[5]   Entropy jumps for isotropic log-concave random vectors and spectral gap [J].
Ball, Keith ;
Van Hang Nguyen .
STUDIA MATHEMATICA, 2012, 213 (01) :81-96
[6]   STABILITY OF THE PREKOPA-LEINDLER INEQUALITY [J].
Ball, Keith M. ;
Boeroeczky, Karoly J. .
MATHEMATIKA, 2010, 56 (02) :339-356
[7]   Stability of some versions of the Prekopa-Leindler inequality [J].
Ball, Keith M. ;
Boeroeczky, Karoly J. .
MONATSHEFTE FUR MATHEMATIK, 2011, 163 (01) :1-14
[8]  
Barthe F., 2022, Mem. Am. Math. Soc., V276
[9]   Positivity improvement and Gaussian kernels [J].
Barthe, Franck ;
Wolff, Pawel .
COMPTES RENDUS MATHEMATIQUE, 2014, 352 (12) :1017-1021
[10]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182