A New Class of Trigonometric B-Spline Curves

被引:2
作者
Albrecht, Gudrun [1 ]
Mainar, Esmeralda [2 ]
Pena, Juan Manuel [2 ]
Rubio, Beatriz [2 ]
机构
[1] Univ Nacl Colombia, Sch Math, Medellin Campus, Medellin 4309511, Colombia
[2] Univ Zaragoza, Dept Appl Math, Univ Res Inst Math & Its Applicat IUMA, Zaragoza 50009, Spain
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 08期
关键词
trigonometric curves; B-splines; B-basis; total positivity;
D O I
10.3390/sym15081551
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We construct one-frequency trigonometric spline curves with a de Boor-like algorithm for evaluation and analyze their shape-preserving properties. The convergence to quadratic B-spline curves is also analyzed. A fundamental tool is the concept of the normalized B-basis, which has optimal shape-preserving properties and good symmetric properties.
引用
收藏
页数:22
相关论文
共 38 条
[1]   Spatial Pythagorean-Hodograph B-Spline curves and 3D point data interpolation [J].
Albrecht, Gudrun ;
Beccari, Carolina Vittoria ;
Romani, Lucia .
COMPUTER AIDED GEOMETRIC DESIGN, 2020, 80
[2]   Planar Pythagorean-Hodograph B-Spline curves [J].
Albrecht, Gudrun ;
Vittoria Beccari, Carolina ;
Canonne, Jean-Charles ;
Romani, Lucia .
COMPUTER AIDED GEOMETRIC DESIGN, 2017, 57 :57-77
[3]  
Alfeld P, 1995, MATHEMATICAL METHODS FOR CURVES AND SURFACES, P11
[4]  
[Anonymous], 1993, Fundamentals of Computer Aided Geometric Design
[5]   A Novel Approach of Hybrid Trigonometric Bezier Curve to the Modeling of Symmetric Revolutionary Curves and Symmetric Rotation Surfaces [J].
Bibi, Samia ;
Abbas, Muhammad ;
Misro, Md Yushalify ;
Hu, Gang .
IEEE ACCESS, 2019, 7 :165779-165792
[6]   TOTALLY POSITIVE BASES FOR SHAPE-PRESERVING CURVE DESIGN AND OPTIMALITY OF B-SPLINES [J].
CARNICER, JM ;
PENA, JM .
COMPUTER AIDED GEOMETRIC DESIGN, 1994, 11 (06) :633-654
[7]  
Farin G., 1997, CURVES SURFACES COMP
[8]   Local modification of Pythagorean-hodograph quintic spline curves using the B-spline form [J].
Farouki, Rida T. ;
Giannelli, Carlotta ;
Sestini, Alessandra .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (01) :199-225
[9]   Identification and "reverse engineering" of Pythagorean-hodograph curves [J].
Farouki, Rida T. ;
Giannelli, Carlotta ;
Sestini, Alessandra .
COMPUTER AIDED GEOMETRIC DESIGN, 2015, 34 :21-36
[10]   THE CONFORMAL-MAP Z-]Z2 OF THE HODOGRAPH PLANE [J].
FAROUKI, RT .
COMPUTER AIDED GEOMETRIC DESIGN, 1994, 11 (04) :363-390