Global optimum solutions for a system of (k, ?)-Hilfer fractional differential equations: Best proximity point approach

被引:2
作者
Patle, Pradip Ramesh [2 ]
Gabeleh, Moosa [1 ]
De La Sen, Manuel [3 ]
机构
[1] Ayatollah Boroujerdi Univ, Dept Math, Boroujerd, Iran
[2] VIT AP Univ, Sch Adv Sci, Dept Math, Amravati 522237, India
[3] Univ Basque Country, Inst Res & Dev Proc, Leioa 48940, Bizkaia, Spain
关键词
best proximity point (pair); measure of noncompactness; Hilfer fractional differential equation; (k; )-Hilfer fractional derivative; cyclic mapping; noncyclic mapping; FIXED-POINT; NONCOMPACTNESS; EXISTENCE;
D O I
10.1515/dema-2022-0253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, a class of cyclic (noncyclic) operators are defined on Banach spaces via concept of measure of noncompactness using some abstract functions. The best proximity point (pair) results are manifested for the said operators. The obtained main results are applied to demonstrate the existence of optimum solutions of a system of fractional differential equations involving (k, ?)-Hilfer fractional derivatives.
引用
收藏
页数:12
相关论文
共 32 条
[1]  
Adigüzel RS, 2021, APPL COMPUT MATH-BAK, V20, P313
[2]   On the solution of a boundary value problem associated with a fractional differential equation [J].
Adiguzel, Rezan Sevinik ;
Aksoy, Umit ;
Karapinar, Erdal ;
Erhan, Inci M. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (13) :10928-10939
[3]  
Akhmerov A. A., 1992, Measure of Noncompactness and Condensing Operators
[4]  
Anakira Nidal, 2022, Nonlinear Functional Analysis and Applications, V27, P679, DOI 10.22771/nfaa.2022.27.03.14
[5]  
Angelis P., 2020, CHAOS SOLITON FRACT, V138
[6]  
[Anonymous], 1967, Rend. Sem. Mat. Univ. Padova
[7]  
[Anonymous], 1980, Measure of Noncompactness in Banach Spaces
[8]  
Balachandran K., 2019, NONLINEAR FUNCT ANAL, V24, P457
[9]  
Banas J., 2017, ADV NONLINEAR ANAL V
[10]  
Darbo G., 1955, Rend. Sem. Mat. Univ. Padova, V24, P84