FRAME HYDRODYNAMICS OF BIAXIAL NEMATICS FROM MOLECULAR-THEORY-BASED TENSOR MODELS

被引:4
作者
Li, Sirui [1 ]
Xu, Jie [2 ,3 ]
机构
[1] Guizhou Univ, Sch Math & Stat, Guiyang 550025, Peoples R China
[2] Chinese Acad Sci, LSEC, Beijing, Peoples R China
[3] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp ICMSEC, Acad Math & Syst Sci AMSS, NCMIS, Beijing, Peoples R China
关键词
liquid crystals; biaxial nematic phase; hydrodynamics; Hilbert expansion; closure approximation; BENT-CORE MOLECULES; MACROSCOPIC THEORY; MICROSCOPIC THEORY; ELASTIC-CONSTANTS; ORDER PARAMETERS; LIQUID-CRYSTALS; WELL-POSEDNESS; SYMMETRY; PHASES; FLOW;
D O I
10.1137/21M1465792
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Starting from a dynamic tensor model about two second-order tensors, we derive the frame hydrodynamics for the biaxial nematic phase using the Hilbert expansion. The coefficients in the frame model are derived from those in the tensor model. The energy dissipation of the tensor model is maintained in the frame model. The model is reduced to the Ericksen-Leslie model if the biaxial bulk energy minimum of the tensor model is reduced to a uniaxial one.
引用
收藏
页码:1467 / 1495
页数:29
相关论文
共 45 条
[1]   Biaxial nematic phase in bent-core thermotropic mesogens [J].
Acharya, BR ;
Primak, A ;
Kumar, S .
PHYSICAL REVIEW LETTERS, 2004, 92 (14) :145506-1
[2]   Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow [J].
Becker, Roland ;
Feng, Xiaobing ;
Prohl, Andreas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) :1704-1731
[3]  
Beris A.N., 1994, THERMODYNAMICS FLOWI
[4]   Universal mean-field phase diagram for biaxial nematics obtained from a minimax principle [J].
Bisi, Fulvio ;
Virga, Epifanio G. ;
Gartland, Eugene C., Jr. ;
De Matteis, Giovanni ;
Sonnet, Andre M. ;
Durand, Georges E. .
PHYSICAL REVIEW E, 2006, 73 (05)
[5]   HYDRODYNAMICS OF BIAXIAL DISCOTICS [J].
BRAND, H ;
PLEINER, H .
PHYSICAL REVIEW A, 1981, 24 (05) :2777-2788
[6]   Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals [J].
Du, Q ;
Guo, BY ;
Shen, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (03) :735-762
[7]   CONSERVATION LAWS FOR LIQUID CRYSTALS [J].
ERICKSEN, JL .
TRANSACTIONS OF THE SOCIETY OF RHEOLOGY, 1961, 5 :23-34
[8]   Critical points of the Onsager functional on a sphere [J].
Fatkullin, I ;
Slastikov, V .
NONLINEARITY, 2005, 18 (06) :2565-2580
[9]   FLUID-DYNAMICS OF BIAXIAL NEMATICS [J].
GOVERS, E ;
VERTOGEN, G .
PHYSICA A, 1985, 133 (1-2) :337-344
[10]   From Microscopic Theory to Macroscopic Theory: a Systematic Study on Modeling for Liquid Crystals [J].
Han, Jiequn ;
Luo, Yi ;
Wang, Wei ;
Zhang, Pingwen ;
Zhang, Zhifei .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (03) :741-809