Research on the Defect Detection Algorithm of Warp-Knitted Fabrics Based on Improved YOLOv5

被引:5
|
作者
Zhou, Qihong [1 ]
Sun, Haodong [1 ]
Chen, Peng [1 ]
Chen, Ge [1 ]
Wang, Shui [2 ]
Wang, Hanzhu [2 ]
机构
[1] Donghua Univ, Coll Mech Engn, 2999 North Renmin Rd, Shanghai 201620, Peoples R China
[2] Wuyang Text Machinery Co Ltd, Changzhou, Peoples R China
关键词
Warp-knitted fabric; YOLOv5; Transposed convolution; Spatial pyramid; Defect detection;
D O I
10.1007/s12221-023-00253-1
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
To resolve the problems of low detection accuracy, slow detection speed, and high missed detection rate of traditional warp-knitted fabrics, this study researches and proposes an improved YOLOv5 algorithm for automatic detection of warp-knitted fabric defects, utilizing YOLOv5's fast detection speed and high accuracy. First, a multi-head self-attention mechanism module with an improved activation function is proposed to enhance the model's attention to the defect area of the fabric, improve the detection accuracy of warp-knitted fabric defects and reduce the missed detection rate. Second, a hybrid atrous space pyramid module is added to the backbone extraction network to enhance the receptive field, capture global feature details, and improve the model's recognition and location accuracy of warp-knitted fabric defects. Finally, the transposed convolution is used as an upsampling layer to improve the feature fusion network. The feature extraction layer can better combine fine-grained details with highly abstract information, enhance the accuracy of feature fusion, and then improve the detection accuracy of the model. Experimental results show that using the self-built warp-knitted fabric dataset, the mean average precision of the improved YOLOv5 is 91.3%, the precision rate is 89.7%, and the recall rate is 79.9%, which is 7.9%, 15.6% and 4.1% higher than the original YOLOv5 algorithm, respectively. The improved YOLOv5 defect detection algorithm has a higher accuracy, faster speed, and better robustness, which is helpful for the development and application of a warp-knitted fabric automatic inspection system.
引用
收藏
页码:2903 / 2919
页数:17
相关论文
共 50 条
  • [41] Insulator defect detection based on improved Yolov5s
    Wei, Dehong
    Hu, Bo
    Shan, Chaoyang
    Liu, Hanlin
    FRONTIERS IN EARTH SCIENCE, 2024, 11
  • [42] Improved YOLOv5-Based Defect Detection in Photovoltaic Modules
    Guo Lan
    Liu Zhengxin
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (20)
  • [43] Insulator defect detection in transmission line based on an improved lightweight YOLOv5s algorithm
    Wei, Liangliang
    Jin, Jun
    Deng, Kaiyuan
    Liu, Han
    ELECTRIC POWER SYSTEMS RESEARCH, 2024, 233
  • [44] Improved YOLOv5-based pore defect detection algorithm for wire arc additive manufacturing
    Zhou, Xiangman
    Zheng, Shicheng
    Li, Runsheng
    Xiong, Xiaochen
    Yuan, Youlu
    Bai, Xingwang
    Fu, Junjian
    Zhang, Haiou
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [45] Defect Detection Algorithm Based on Lightweight and Improved YOLOv5s for Visible Light Insulators
    Xie J.
    Du Y.
    Liu Z.
    Liu H.
    Wang T.
    Miao M.
    Dianwang Jishu/Power System Technology, 2023, 47 (12): : 5273 - 5282
  • [46] Lightweight insulator defect detection algorithm based on improved YOLOv8
    Tang, Mingyue
    Wu, Hang
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 197 - 201
  • [47] Improved YOLOv7-based steel surface defect detection algorithm
    Xie, Yinghong
    Yin, Biao
    Han, Xiaowei
    Hao, Yan
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 346 - 368
  • [48] Improved Steel Surface Defect Detection Algorithm Based on YOLOv8
    You, Congzhe
    Kong, Haozheng
    IEEE ACCESS, 2024, 12 : 99570 - 99577
  • [49] Surface Defect Detection based on Improved YOLOv3-Tiny Algorithm
    Yuan, Huaqing
    He, Yi
    Zheng, Xuan
    Li, Changbin
    Wu, Aiguo
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5769 - 5774
  • [50] YOLO-MBBi: PCB Surface Defect Detection Method Based on Enhanced YOLOv5
    Du, Bowei
    Wan, Fang
    Lei, Guangbo
    Xu, Li
    Xu, Chengzhi
    Xiong, Ying
    ELECTRONICS, 2023, 12 (13)