Surface-Diluted LiMn6 Superstructure Units Utilizing PO43- Confined Ni-Doping Sites to Stabilize Li-Rich Layered Oxides

被引:17
作者
Cheng, Wenhua [1 ]
Liu, Qingcui [1 ]
Ding, Juan [1 ]
Wang, Xingchao [1 ]
Wang, Lei [2 ]
Wang, Jiulin [1 ]
Zhang, Wenjun [3 ,4 ]
Huang, Yudai [1 ]
机构
[1] Xinjiang Univ, Coll Chem, State Key Lab Chem & Utilizat Carbon Based Energy, Urumqi 830017, Xinjiang, Peoples R China
[2] Univ Minnesota, Dept Chem Engn, Duluth, MN 55812 USA
[3] City Univ Hong Kong, Ctr Superdiamond & Adv Films COSDAF, Kowloon, Hong Kong 999077, Peoples R China
[4] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
capacity and voltage decay; Li-ion batteries; LiMn6 superstructure units; Li-rich layered oxides; surface; interfacial modification; LITHIUM ION BATTERIES; CATHODE MATERIALS; REDOX;
D O I
10.1002/smll.202301564
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Serious capacity and voltage degradation of Li-rich layered oxides (LLOs) caused by severe interfacial side reactions (ISR), structural instability, and transition metal (TM) dissolution during charge/discharge need to be urgently resolved. Here, it is proposed for the inaugural time that the confinement effect of PO43- dilutes the LiMn6 superstructure units on the surface of LLOs, while deriving a stable interface with phosphate compounds and spinel species. Combining theoretical calculations, diffraction, spectroscopy, and micrography, an in-depth investigation of the mechanism is performed. The results show that the modified LLO exhibits excellent anionic/cationic redox reversibility and ultra-high cycling stability. The capacity retention is increased from 72.4% to 95.4%, and the voltage decay is suppressed from 2.48 to 1.29 mV cycle(-1) after 300 cycles at 1 C. It also has stable long cycling performance, with capacity retention improved from 40.2% to 81.9% after 500 cycles at 2 C. The excellent electrochemical performance is attributed to the diluted superstructure units on the surface of LLO inhibiting the TM migration in the intralayer and interlayer. Moreover, the stable interfacial layers alleviate the occurrence of ISR and TM dissolution. Therefore, this strategy can give some important insights into the development of highly stable LLOs.
引用
收藏
页数:11
相关论文
共 45 条
[1]   Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes [J].
Assat, Gaurav ;
Foix, Dominique ;
Delacourt, Charles ;
Iadecola, Antonella ;
Dedryvere, Remi ;
Tarascon, Jean-Marie .
NATURE COMMUNICATIONS, 2017, 8
[2]   Demystifying the Lattice Oxygen Redox in Layered Oxide Cathode Materials of Lithium-Ion Batteries [J].
Chen, Jun ;
Deng, Wentao ;
Gao, Xu ;
Yin, Shouyi ;
Yang, Li ;
Liu, Huanqing ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Ji, Xiaobo .
ACS NANO, 2021, 15 (04) :6061-6104
[3]   Zn/Ti dual concentration-gradients surface doping to improve the stability and kinetics for Li-rich layered oxides cathode [J].
Cheng, Wenhua ;
Ding, Juan ;
Liu, Zhenjie ;
Zhang, Jing ;
Liu, Qingcui ;
Wang, Xingchao ;
Wang, Lei ;
Sun, Zhipeng ;
Cheng, Yajun ;
Xu, Zhuijun ;
Lei, Yuhan ;
Wang, Jiulin ;
Huang, Yudai .
CHEMICAL ENGINEERING JOURNAL, 2023, 451
[4]   Enhancing the electrochemical performance of lithium ion batteries using mesoporous Li3V2(PO4)3/C microspheres [J].
Du, Xiaoyong ;
He, Wen ;
Zhang, Xudong ;
Yue, Yuanzheng ;
Liu, Hong ;
Zhang, Xueguang ;
Min, Dandan ;
Ge, Xinxia ;
Du, Yi .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (13) :5960-5969
[5]   High-Temperature Treatment of Li-Rich Cathode Materials with Ammonia: Improved Capacity and Mean Voltage Stability during Cycling [J].
Erickson, Evan M. ;
Sclar, Hadar ;
Schipper, Florian ;
Liu, Jing ;
Tian, Ruiyuan ;
Ghanty, Chandan ;
Burstein, Larisa ;
Leifer, Nicole ;
Grinblat, Judith ;
Talianker, Michael ;
Shin, Ji-Yong ;
Lampert, Jordan K. ;
Markovsky, Boris ;
Frenkel, Anatoly I. ;
Aurbach, Doron .
ADVANCED ENERGY MATERIALS, 2017, 7 (18)
[6]   A Universal Strategy toward the Precise Regulation of Initial Coulombic Efficiency of Li-Rich Mn-Based Cathode Materials [J].
Guo, Weibin ;
Zhang, Chenying ;
Zhang, Yinggan ;
Lin, Liang ;
He, Wei ;
Xie, Qingshui ;
Sa, Baisheng ;
Wang, Laisen ;
Peng, Dong-Liang .
ADVANCED MATERIALS, 2021, 33 (38)
[7]   Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides [J].
Hua, Weibo ;
Wang, Suning ;
Knapp, Michael ;
Leake, Steven J. ;
Senyshyn, Anatoliy ;
Richter, Carsten ;
Yavuz, Murat ;
Binder, Joachim R. ;
Grey, Clare P. ;
Ehrenberg, Helmut ;
Indris, Sylvio ;
Schwarz, Bjoern .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]   Delocalized Li@Mn6 superstructure units enable layer stability of high-performance Mn-rich cathode materials [J].
Huang, Weiyuan ;
Lin, Cong ;
Qiu, Jimin ;
Li, Shunning ;
Chen, Zhefeng ;
Chen, Haibiao ;
Zhao, Wenguang ;
Ren, Guoxi ;
Li, Xiaoyuan ;
Zhang, Mingjian ;
Pan, Feng .
CHEM, 2022, 8 (08) :2163-2178
[9]   Lattice-Oxygen-Stabilized Li- and Mn-Rich Cathodes with Sub-Micrometer Particles by Modifying the Excess-Li Distribution [J].
Hwang, Jaeseong ;
Myeong, Seungjun ;
Lee, Eunryeol ;
Jang, Haeseong ;
Yoon, Moonsu ;
Cha, Hyungyeon ;
Sung, Jaekyung ;
Kim, Min Gyu ;
Seo, Dong-Hwa ;
Cho, Jaephil .
ADVANCED MATERIALS, 2021, 33 (18)
[10]   Excess-Li Localization Triggers Chemical Irreversibility in Li- and Mn-Rich Layered Oxides [J].
Hwang, Jaeseong ;
Myeong, Seungjun ;
Jin, Wooyoung ;
Jang, Haeseong ;
Nam, Gyutae ;
Yoon, Moonsu ;
Kim, Su Hwan ;
Joo, Se Hun ;
Kwak, Sang Kyu ;
Kim, Min Gyu ;
Cho, Jaephil .
ADVANCED MATERIALS, 2020, 32 (34)