Graphene Oxide-Intercalated Montmorillonite Layered Stack Incorporated into Poly(2,5-Benzimidazole) for Preparing Wide-Temperature Proton Exchange Membranes

被引:8
|
作者
Wang, Bei [1 ]
Ling, Zhiwei [1 ]
Li, Ningning [1 ]
Liu, Qingting [1 ]
Fu, Xudong [1 ]
Zhang, Rong [1 ]
Hu, Shengfei [1 ]
Meng, Ziyi [1 ,3 ]
Zhao, Feng [1 ,2 ]
Li, Xiao [1 ,4 ]
机构
[1] Hubei Univ Technol, Hubei Prov Key Lab Green Mat Light Ind, New Mat & Green Mfg Talent Intro & Innovat Demonst, Wuhan 430068, Peoples R China
[2] WeiFu High Technol Grp CoLtd, Wuxi 214028, Peoples R China
[3] Univ Rochester, Mat Sci, Rochester, NY 14627 USA
[4] Wuhan Troowin Power Syst Technol Co Ltd, Wuhan 430079, Peoples R China
关键词
graphene oxide; montmorillonite; poly(2,5-benzimidazole); nanomaterials; protonexchange membrane; POLYMER ELECTROLYTE MEMBRANE; FUEL-CELLS; COMPOSITE MEMBRANES; NANOCOMPOSITE MEMBRANE; PERFORMANCE; ENHANCE; ACID;
D O I
10.1021/acsanm.3c04409
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, graphene oxide-intercalated montmorillonite (GO-MMT) layered stacks were introduced into a poly(2,5-benzimidazole) (ABPBI) matrix via in situ synthesis to prepare composite membranes (GO-MMT/ABPBI) for wide-temperature range (0-180 degrees C) fuel cell applications. After the introduction of GO-MMT nanocomposites, the ABPBI membranes showed improved tensile strength, water and phosphoric acid retention ratio, and proton conductivity. The GO-MMT/ABPBI membrane was highly conductive when operated from 0 to 180 degrees C and attained proton conductivities of 50.3 mS/cm (0% RH/180 degrees C) and 38.3 mS/cm (98% RH/90 degrees C), respectively, which were about 1.6 and 1.7 times those of the pristine ABPBI membrane under the same conditions. This improved performance was because the nanolayered stacks of GO-MMT confined phosphoric acid and water within its interchannels via hydrogen bonds. This paper demonstrates the potential application of composite membranes in fuel cells with a wide operating temperature range.
引用
收藏
页码:20355 / 20366
页数:12
相关论文
共 18 条
  • [1] Poly(2,5-benzimidazole)-Grafted Graphene Oxide as an Effective Proton Conductor for Construction of Nanocomposite Proton Exchange Membrane
    Qiu, Xiang
    Ueda, Mitsuru
    Hu, Huayuan
    Sui, Yugian
    Zhang, Xuan
    Wang, Lianjun
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (38) : 33049 - 33058
  • [2] Halloysite ionogels enabling poly(2,5-benzimidazole)-based proton-exchange membranes for wide-temperature-range applications
    Liu, Qingting
    Xiong, Chunyong
    Shi, Hongying
    Liu, Lele
    Wang, Xiaohe
    Fu, Xudong
    Zhang, Rong
    Hu, Shengfei
    Bao, Xujin
    Li, Xiao
    Zhao, Feng
    Xu, Chenxi
    JOURNAL OF MEMBRANE SCIENCE, 2023, 668
  • [3] Poly(2,5-benzimidazole)-silica nanocomposite membranes for high temperature proton exchange membrane fuel cell
    Mao Linlin
    Mishra, Ananta Kumar
    Kim, Nam Hoon
    Lee, Joong Hee
    JOURNAL OF MEMBRANE SCIENCE, 2012, 411 : 91 - 98
  • [4] Polyethyleneimine-filled sepiolite nanorods-embedded poly (2,5-benzimidazole) composite membranes for wide-temperature PEMFCs
    Liu, Qingting
    Wang, Xiaohe
    Zhang, Xiaoxiao
    Ling, Zhiwei
    Wu, Wenzhuo
    Fu, Xudong
    Zhang, Rong
    Hu, Shengfei
    Li, Xiao
    Zhao, Feng
    Bao, Xujin
    JOURNAL OF CLEANER PRODUCTION, 2022, 359
  • [5] Proton exchange membranes based on poly(2,5-benzimidazole) and sulfonated poly(ether ether ketone) for fuel cells
    Zheng, Haitao
    Luo, Hongze
    Mathe, Mkhulu
    JOURNAL OF POWER SOURCES, 2012, 208 : 176 - 179
  • [6] Polyethyleneimine-confined halloysite nanotubes for poly (2,5-benzimidazole) composite membranes with phosphoric acid retention and proton conductivity via ion pairs for wide-temperature PEMFCs
    Liu, Qingting
    Ling, Zhiwei
    Wang, Xiaohe
    Fu, Xudong
    Wu, Wenzhuo
    Xiong, Chunyong
    Wang, Bei
    Zhang, Rong
    Li, Xiao
    Zhao, Feng
    Bao, Xujin
    Hu, Shengfei
    Yang, Jun
    COMPOSITES SCIENCE AND TECHNOLOGY, 2023, 242
  • [7] Phosphoric Acid Doped Poly(2,5-benzimidazole)-Based Proton Exchange Membrane for High Temperature Fuel Cell Application
    Nayak, Ratikanta
    Dey, Tapobrata
    Ghosh, Prakash C.
    Bhattacharyya, Arup R.
    POLYMER ENGINEERING AND SCIENCE, 2016, 56 (12): : 1366 - 1374
  • [8] Sulfonated poly(arylene ether sulfone) composite membranes having poly(2,5-benzimidazole)-grafted graphene oxide for fuel cell applications
    Ko, Taeyun
    Kim, Kihyun
    Lim, Min-Young
    Nam, Sang Yong
    Kim, Tae-Ho
    Kim, Sung-Kon
    Lee, Jong-Chan
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (41) : 20595 - 20606
  • [9] Preparation and Properties of Poly(2,5-benzimidazole)/Sulfonated Sepiolite Composite Proton Exchange Membrane for Application in Low Temperature Fuel Cells
    Zhang X.
    Yang S.
    Zhang Y.
    Xia L.
    Fu X.
    Zhang R.
    Hu S.
    Zhao F.
    Li X.
    Liu Q.
    Liu, Qingting (liuqt@hbut.edu.cn), 2018, Sichuan University (34): : 143 - 149
  • [10] Recent developments on proton conducting poly(2,5-benzimidazole) (ABPBI) membranes for high temperature polymer electrolyte membrane fuel cells
    Asensio, JA
    Gómez-Romero, P
    FUEL CELLS, 2005, 5 (03) : 336 - 343