Quasi-invariant measures on topological groups and ω-powers

被引:0
|
作者
Kharazishvili, Alexander [1 ,2 ]
机构
[1] Javakhishvili Tbilisi State Univ, A Razmadze Math Inst 1, 2 Merab Aleksidze 2lane,0193, Tbilisi 0186, Georgia
[2] Javakhishvili Tbilisi State Univ, I Vekua Inst Appl Math 1, 2 Univ Str, Tbilisi 0186, Georgia
关键词
Topological group; quasi-invariant measure; thick subset; GCH; STEINHAUS PROPERTY; HAAR MEASURE; EXTENSIONS; DENSITY;
D O I
10.1515/gmj-2023-2073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under GCH, there are described the cardinalities of all Hausdorff topological groups G such that there is a nonzero Borel measure on G having the card ( G )-Suslin property and quasi-invariant with respect to an everywhere dense subgroup of G. Some connections are pointed out with the method of Kodaira and Kakutani (1950) for constructing a nonseparable translation invariant extension of the standard Lebesgue (Haar) measure on the circle group S-1.
引用
收藏
页码:69 / 78
页数:10
相关论文
共 50 条