The increasing interest in serverless computation and ubiquitous wireless networks has led to numerous connected devices in our surroundings. Such IoT devices have access to an abundance of raw data, but their inadequate resources in computing limit their capabilities. With the emergence of deep neural networks (DNNs), the demand for the computing power of IoT devices is increasing. To overcome inadequate resources, several studies have proposed distribution methods for IoT devices that harvest the aggregated computing power of idle IoT devices in an environment. However, since such a distributed system strongly relies on each device, unstable latency, and intermittent failures, the common characteristics of IoT devices and wireless networks, cause high recovery overheads. To reduce this overhead, we propose a novel robustness method with a close-to-zero recovery latency for DNN computations. Our solution never loses a request or spends time recovering from a failure. To do so, first, we analyze how matrix computations in DNNs are affected by distribution. Then, we introduce a novel coded distributed computing (CDC) method, the cost of which, unlike that of modular redundancies, is constant when the number of devices increases. Our method is applied at the library level, without requiring extensive changes to the program, while still ensuring a balanced work assignment during distribution.