Challenging the geographic bias in recognising large-scale patterns of diversity change

被引:0
作者
Zhang, Wenyuan [1 ,4 ,5 ]
Grenyer, Richard [2 ]
Gaston, Kevin J. [3 ]
Sheldon, Ben C. [1 ]
机构
[1] Univ Oxford, Edward Grey Inst, Dept Biol, Oxford, England
[2] Univ Oxford, Sch Geog & Environm, Oxford, England
[3] Univ Exeter, Environm & Sustainabil Inst, Cornwall, England
[4] McGill Univ, Quebec Ctr Biodivers Sci, Dept Biol, Montreal, PQ H3A 1B1, Canada
[5] McGill Univ, Quebec Ctr Biodivers Sci, Dept Biol, Montreal, PQ, Canada
关键词
biodiversity change; functional diversity; nongeographic patterns; pattern recognition; phylogenetic diversity; spatial distribution; taxonomic diversity; temporal trends; SELF-ORGANIZING MAP; CLIMATE-CHANGE; PHYLOGENETIC DIVERSITY; FUNCTIONAL DIVERSITY; BIODIVERSITY CHANGE; SPECIES-DIVERSITY; CONSERVATION; IMPUTATION; COMMUNITIES; POPULATION;
D O I
10.1111/ddi.13775
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
AimGeographic structure is a fundamental organising principle in ecological and Earth sciences, and our planet is conceptually divided into distinct geographic clusters (e.g. ecoregions and biomes) demarcating unique diversity patterns. Given recent advances in technology and data availability, however, we ask whether geographically clustering diversity time-series should be the default framework to identify meaningful patterns of diversity change.LocationNorth America.TaxonAves.MethodsWe first propose a framework that recognises patterns of diversity change based on similarities in the behaviour of diversity time-series, independent of their specific or relative spatial locations. Specifically, we applied an artificial neural network approach, the self-organising map (SOM), to group time-series of over 0.9 million observations from the North American Breeding Birds Survey (BBS) data from 1973 to 2016. We then test whether time-series identified as having similar behaviour are geographically structured.ResultsWe find little evidence of strong geographic structure in patterns of diversity change for North American breeding birds. The majority of the recognised diversity time-series patterns tend to be indistinguishable from being independently distributed in space.Main ConclusionsOur results suggest that geographic proximity may not correspond to shared temporal trends in diversity; assuming that geographic clustering is the basis for analysis may bias diversity trend estimation. We suggest that approaches that consider variability independently of geographic structure can serve as a useful addition to existing organising rules of biodiversity time-series.
引用
收藏
页码:13 / 25
页数:13
相关论文
共 78 条
  • [1] A comparison of imputation techniques for handling missing predictor values in a risk model with a binary outcome
    Ambler, Gareth
    Omar, Rumana Z.
    Royston, Patrick
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (03) : 277 - 298
  • [2] [Anonymous], 2018, Ecological informatics
  • [3] Temperature-related biodiversity change across temperate marine and terrestrial systems
    Antao, Laura H.
    Bates, Amanda E.
    Blowes, Shane A.
    Waldock, Conor
    Supp, Sarah R.
    Magurran, Anne E.
    Dornelas, Maria
    Schipper, Aafke M.
    [J]. NATURE ECOLOGY & EVOLUTION, 2020, 4 (07) : 927 - +
  • [4] Can niche-based distribution models outperform spatial interpolation?
    Bahn, Volker
    McGill, Brian J.
    [J]. GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2007, 16 (06): : 733 - 742
  • [5] Testing the predictive performance of distribution models
    Bahn, Volker
    McGill, Brian J.
    [J]. OIKOS, 2013, 122 (03) : 321 - 331
  • [6] Different response of the taxonomic, phylogenetic and functional diversity of birds to forest fragmentation
    Belcik, Michal
    Lenda, Magdalena
    Amano, Tatsuya
    Skorka, Piotr
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [7] The geography of biodiversity change in marine and terrestrial assemblages
    Blowes, Shane A.
    Supp, Sarah R.
    Antao, Laura H.
    Bates, Amanda
    Bruelheide, Helge
    Chase, Jonathan M.
    Moyes, Faye
    Magurran, Anne
    McGill, Brian
    Myers-Smith, Isla H.
    Winter, Marten
    Bjorkman, Anne D.
    Bowler, Diana E.
    Byrnes, Jarrett E. K.
    Gonzalez, Andrew
    Hines, Jes
    Isbell, Forest
    Jones, Holly P.
    Navarro, Laetitia M.
    Thompson, Patrick L.
    Vellend, Mark
    Waldock, Conor
    Dornelas, Maria
    [J]. SCIENCE, 2019, 366 (6463) : 339 - +
  • [8] Temporal trends in the spatial bias of species occurrence records
    Bowler, Diana E.
    Callaghan, Corey T.
    Bhandari, Netra
    Henle, Klaus
    Barth, M. Benjamin
    Koppitz, Christian
    Klenke, Reinhard
    Winter, Marten
    Jansen, Florian
    Bruelheide, Helge
    Bonn, Aletta
    [J]. ECOGRAPHY, 2022, 2022 (08)
  • [9] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [10] Global biodiversity conservation priorities
    Brooks, T. M.
    Mittermeier, R. A.
    da Fonseca, G. A. B.
    Gerlach, J.
    Hoffmann, M.
    Lamoreux, J. F.
    Mittermeier, C. G.
    Pilgrim, J. D.
    Rodrigues, A. S. L.
    [J]. SCIENCE, 2006, 313 (5783) : 58 - 61