Xinmaikang-mediated mitophagy attenuates atherosclerosis via the PINK1/Parkin signaling pathway

被引:8
|
作者
Cao, Yanhong [1 ,2 ,3 ,4 ,5 ]
Chen, Xin [1 ,2 ,3 ,4 ,5 ]
Pan, Fuqiang [6 ]
Wang, Mingyang [2 ,3 ,4 ,5 ]
Zhuang, Haowen [2 ,3 ,4 ,5 ]
Chen, Jiangna [7 ]
Lu, Lu [2 ,3 ,4 ,5 ]
Wang, Lingjun [2 ,3 ,4 ,5 ]
Wang, Ting [1 ]
机构
[1] Guangzhou Univ Chinese Med, Dongguan Hosp, Dongguan 523000, Peoples R China
[2] Guangzhou Univ Chinese Med, Affiliated Hosp 1, Guangzhou 510405, Peoples R China
[3] Guangzhou Univ Chinese Med, Clin Med Sch 1, Guangzhou 510405, Peoples R China
[4] Guangzhou Univ Chinese Med, Lingnan Med Res Ctr, Guangzhou 510405, Peoples R China
[5] Guangzhou Key Lab Chinese Med Prevent & Treatment, Guangzhou 510405, Peoples R China
[6] Liwan Dist Peoples Hosp Guangzhou, Guangzhou 510405, Peoples R China
[7] Sun Yan Sen Univ, Zhongshan Ophthalm Ctr, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Atherosclerosis; Mitophagy; PINK1/Parkin; Macrophage; Reactive oxygen specie; MITOCHONDRIAL FISSION;
D O I
10.1016/j.phymed.2023.154955
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: The Chinese herbal compound Xinmaikang (XMK) is effective in treating atherosclerosis (AS), although the associated mechanisms of action remain unclear. We hypothesize that XMK increases mitophagy via the PINK1/Parkin signaling pathway and decreases reactive oxygen species (ROS), thus treating AS. Purpose: To explore the above-mentioned mechanisms of action of XMK in AS. Materials and methods: Ultra-performance liquid chromatography assay was performed to clarify the composition of XMK. A 16-week high-fat diet was fed to APOE(-/-) mice to form an AS model. Next, mice were given XMK(0.95 g/kg/d, 1.99 g/kg/d, 3.98 g/kg/d, i.g.) or Atorvastatin(3 mg/kg/d, i.g.) or Rapamycin(4 mg/kg/d, i.p.) or XMK with Mdivi-1(40 mg/kg/d, i.p.) or an equivalent amount of normal saline for 4 weeks. Then mice were examined for AS plaque area, lesion area, collagen fiber, pro-inflammatory cytokines, lipid level, ROS level and mitophagy level. We assessed AS using Oil Red O, hematoxylin and eosin, and Sirius red staining, as well as ROS measurements. Mitophagy was evaluated by transmission electron microscopy, real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, single-cell Western blot, and immunofluorescence staining. In vitro, by oxidizing low-density lipoprotein, formation of RAW264.7 macrophage-derived foam cells induced. we induced foam cell formation in RAW264.7 macrophages. Then cells were incubated with XMK-medicated serum with or without Mdivi-1. We examined foam cell formation, ROS level, mitophagy level in cells. Finally, we knocked down the PINK1, and examined foam cell formation and PINK1/Parkin level in RAW264.7 macrophages. Results: UPLC analysis revealed 102 main ingredients in XMK. In vivo, XMK at medium-dose or high-dose significantly reduced AS plaques, lipids, pro-inflammatory cytokines, and ROS and increased mitophagy. In further study, Single-cell western blot showed that mitophagy level in macrophages sorted from AS mice was lower than the control mice. While XMK improved mitophagy level. In vitro, XMK reduced foam cell formation and ROS and increased mitophagy. When PINK1 was knocked down, XMK's effects on foam cell formation and PINK1/Parkin pathway activation were reduced. Conclusion: The study shows that XMK is effective against AS by mediating macrophage mitophagy via the PINK1/Parkin signaling pathway. For the treatment of AS and drug discovery, it provides an experimental basis and target.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Geniposide effectively safeguards HT22 cells against Aβ-induced damage by activating mitophagy via the PINK1/Parkin signaling pathway
    Ye, Jiaxi
    Wu, Jiaying
    Ai, Liang
    Zhu, Min
    Li, Yun
    Yin, Dong
    Huang, Qihui
    BIOCHEMICAL PHARMACOLOGY, 2024, 226
  • [42] Bcl-2 Proteins Regulate Mitophagy in Lipopolysaccharide-Induced Acute Lung Injury via PINK1/Parkin Signaling Pathway
    Zhang, Zhihao
    Chen, Zhugui
    Liu, Ruimeng
    Liang, Qingchun
    Peng, Zhiyong
    Yin, Shuang
    Tang, Jing
    Gong, Ting
    Liu, Youtan
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020, 2020
  • [43] Corosolic acid attenuates cardiac ischemia/reperfusion injury through the PHB2/PINK1/parkin/mitophagy pathway
    Zhang, Jun
    Zhao, Yongjian
    Yan, Lin
    Tan, Mingyue
    Jin, Yifeng
    Yin, Yunfei
    Han, Lianhua
    Ma, Xiao
    Li, Yimin
    Yang, Tianke
    Jiang, Tingbo
    Li, Hongxia
    ISCIENCE, 2024, 27 (08)
  • [44] PINK1/Parkin pathway-mediated mitophagy by AS-IV to explore the molecular mechanism of muscle cell damage
    Li, Lanqi
    Huang, Tingjuan
    Yang, Jie
    Yang, Peidan
    Lan, Haixia
    Liang, Jian
    Cai, Donghong
    Zhong, Huiya
    Jiao, Wei
    Song, Yafang
    BIOMEDICINE & PHARMACOTHERAPY, 2023, 161
  • [45] Costunolide Ameliorates the Methylmalonic Acidemia Via the PINK1/Parkin Pathway
    Xiangpeng Lu
    Hong Zheng
    Huanghuang Bai
    Yanfei Wang
    Luyao Li
    Bingxiang Ma
    Neurochemical Research, 2025, 50 (2)
  • [46] CREG1 attenuates intervertebral disc degeneration by alleviating nucleus pulposus cell pyroptosis via the PINK1/Parkin-related mitophagy pathway
    Zhang, Yang
    Xing, Deguo
    Liu, Yi
    Sha, Shiyu
    Xiao, Yueying
    Liu, Zhonghao
    Yin, Qingfeng
    Gao, Zengxin
    Liu, Wenguang
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2025, 147
  • [47] MitoTEMPO protects against podocyte injury by inhibiting NLRP3 inflammasome via PINK1/Parkin pathway-mediated mitophagy
    Liu, Bihao
    Wang, Dejuan
    Cao, Yiwen
    Wu, Jianjian
    Zhou, Yuan
    Wu, Wenjia
    Wu, Junbiao
    Zhou, Jiuyao
    Qiu, Jianguang
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2022, 929
  • [48] Taurine rescues intervertebral disc degeneration by activating mitophagy through the PINK1/Parkin pathway
    Lin, Shengyuan
    Li, Tao
    Zhang, Bin
    Wang, Peng
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2024, 739
  • [49] Ivermectin induces mitophagy in H9c2 cells via activation of the PINK1/Parkin pathway
    Jia, Yanmin
    Han, Baoxue
    Wang, Rene
    FOOD SCIENCE AND TECHNOLOGY, 2022, 42
  • [50] Ferulic Acid Attenuates Hypoxia/Reoxygenation Injury by Suppressing Mitophagy Through the PINK1/Parkin Signaling Pathway in H9c2 Cells
    Luo, Chenxi
    Zhang, Yehao
    Guo, Hao
    Han, Xiao
    Ren, Junguo
    Liu, Jianxun
    FRONTIERS IN PHARMACOLOGY, 2020, 11