Xinmaikang-mediated mitophagy attenuates atherosclerosis via the PINK1/Parkin signaling pathway

被引:8
|
作者
Cao, Yanhong [1 ,2 ,3 ,4 ,5 ]
Chen, Xin [1 ,2 ,3 ,4 ,5 ]
Pan, Fuqiang [6 ]
Wang, Mingyang [2 ,3 ,4 ,5 ]
Zhuang, Haowen [2 ,3 ,4 ,5 ]
Chen, Jiangna [7 ]
Lu, Lu [2 ,3 ,4 ,5 ]
Wang, Lingjun [2 ,3 ,4 ,5 ]
Wang, Ting [1 ]
机构
[1] Guangzhou Univ Chinese Med, Dongguan Hosp, Dongguan 523000, Peoples R China
[2] Guangzhou Univ Chinese Med, Affiliated Hosp 1, Guangzhou 510405, Peoples R China
[3] Guangzhou Univ Chinese Med, Clin Med Sch 1, Guangzhou 510405, Peoples R China
[4] Guangzhou Univ Chinese Med, Lingnan Med Res Ctr, Guangzhou 510405, Peoples R China
[5] Guangzhou Key Lab Chinese Med Prevent & Treatment, Guangzhou 510405, Peoples R China
[6] Liwan Dist Peoples Hosp Guangzhou, Guangzhou 510405, Peoples R China
[7] Sun Yan Sen Univ, Zhongshan Ophthalm Ctr, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Atherosclerosis; Mitophagy; PINK1/Parkin; Macrophage; Reactive oxygen specie; MITOCHONDRIAL FISSION;
D O I
10.1016/j.phymed.2023.154955
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: The Chinese herbal compound Xinmaikang (XMK) is effective in treating atherosclerosis (AS), although the associated mechanisms of action remain unclear. We hypothesize that XMK increases mitophagy via the PINK1/Parkin signaling pathway and decreases reactive oxygen species (ROS), thus treating AS. Purpose: To explore the above-mentioned mechanisms of action of XMK in AS. Materials and methods: Ultra-performance liquid chromatography assay was performed to clarify the composition of XMK. A 16-week high-fat diet was fed to APOE(-/-) mice to form an AS model. Next, mice were given XMK(0.95 g/kg/d, 1.99 g/kg/d, 3.98 g/kg/d, i.g.) or Atorvastatin(3 mg/kg/d, i.g.) or Rapamycin(4 mg/kg/d, i.p.) or XMK with Mdivi-1(40 mg/kg/d, i.p.) or an equivalent amount of normal saline for 4 weeks. Then mice were examined for AS plaque area, lesion area, collagen fiber, pro-inflammatory cytokines, lipid level, ROS level and mitophagy level. We assessed AS using Oil Red O, hematoxylin and eosin, and Sirius red staining, as well as ROS measurements. Mitophagy was evaluated by transmission electron microscopy, real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, single-cell Western blot, and immunofluorescence staining. In vitro, by oxidizing low-density lipoprotein, formation of RAW264.7 macrophage-derived foam cells induced. we induced foam cell formation in RAW264.7 macrophages. Then cells were incubated with XMK-medicated serum with or without Mdivi-1. We examined foam cell formation, ROS level, mitophagy level in cells. Finally, we knocked down the PINK1, and examined foam cell formation and PINK1/Parkin level in RAW264.7 macrophages. Results: UPLC analysis revealed 102 main ingredients in XMK. In vivo, XMK at medium-dose or high-dose significantly reduced AS plaques, lipids, pro-inflammatory cytokines, and ROS and increased mitophagy. In further study, Single-cell western blot showed that mitophagy level in macrophages sorted from AS mice was lower than the control mice. While XMK improved mitophagy level. In vitro, XMK reduced foam cell formation and ROS and increased mitophagy. When PINK1 was knocked down, XMK's effects on foam cell formation and PINK1/Parkin pathway activation were reduced. Conclusion: The study shows that XMK is effective against AS by mediating macrophage mitophagy via the PINK1/Parkin signaling pathway. For the treatment of AS and drug discovery, it provides an experimental basis and target.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Forsythiaside A attenuates mastitis via PINK1/Parkin-mediated mitophagy
    Liu, Jingjing
    Gao, Yingkui
    Zhang, Huaqiang
    Hao, Zhonghua
    Zhou, Guangwei
    Wen, Haojie
    Su, Qing
    Tong, Chao
    Yang, Xu
    Wang, Xuebing
    PHYTOMEDICINE, 2024, 125
  • [2] The role of rapamycin in the PINK1/Parkin signaling pathway in mitophagy in podocytes
    Yu, Shengyou
    Zhu, Weixue
    Yu, Li
    OPEN LIFE SCIENCES, 2024, 19 (01):
  • [3] Anti-atherosclerosis effect of nobiletin via PINK1/Parkin-mediated mitophagy and NLRP3 inflammasome signaling pathway
    Deng, Yudi
    Tu, Yali
    Yang, Xushan
    Liao, Xiaoshan
    Xia, Zijun
    Liao, Wenzhen
    JOURNAL OF FUNCTIONAL FOODS, 2023, 100
  • [4] Analysing the role of the PINK1/Parkin pathway in Mitophagy
    Ivatt, Rachael
    Ziviani, Elena
    Whitworth, Alexander
    JOURNAL OF NEUROGENETICS, 2010, 24 : 57 - 57
  • [5] Verteporfin suppressed mitophagy via PINK1/parkin pathway in endometrial cancer
    Zhao, Ming -Ming
    Wang, Bo
    Huang, Wen-Xi
    Zhang, Li
    Peng, Rui
    Wang, Chao
    AMERICAN JOURNAL OF CANCER RESEARCH, 2024, 14 (04):
  • [6] Mitophagy: the roles of PINK1 and PARKIN
    Tanaka, K.
    JOURNAL OF NEUROCHEMISTRY, 2015, 134 : 14 - 14
  • [7] Cadmium induces mitophagy through ROS-mediated PINK1/Parkin pathway
    Wei, Xue
    Qi, Yongmei
    Zhang, Xiaoning
    Qiu, Qian
    Gu, Xueyan
    Tao, Chen
    Huang, Dejun
    Zhang, Yingmei
    TOXICOLOGY MECHANISMS AND METHODS, 2014, 24 (07) : 504 - 511
  • [8] PINK1/Parkin-mediated mitophagy in mammalian cells
    Eiyama, Akinori
    Okamoto, Koji
    CURRENT OPINION IN CELL BIOLOGY, 2015, 33 : 95 - 101
  • [9] PINK1/Parkin-mediated mitophagy in neurodegenerative diseases
    Li, Jie
    Yang, Dongming
    Li, Zhiping
    Zhao, Mengyang
    Wang, Dongdong
    Sun, Zhixin
    Wen, Pei
    Dai, Yuexin
    Gou, Fengting
    Ji, Yilan
    Zhao, Deming
    Yang, Lifeng
    AGEING RESEARCH REVIEWS, 2023, 84
  • [10] Tetrahydroxy stilbene glycoside alleviated inflammatory damage by mitophagy via AMPK related PINK1/Parkin signaling pathway
    Gao, Yan
    Li, Juntong
    Li, Jianping
    Hu, Chaoying
    Zhang, Li
    Yan, Jiaqing
    Li, Lin
    Zhang, Lan
    BIOCHEMICAL PHARMACOLOGY, 2020, 177