Orientation of carbon fiber in magnesium-doped hydroxyapatite and its effect on mechanical and tribological properties of carbon fiber reinforced composites

被引:2
|
作者
Zhao, Xueni [1 ]
Guan, Jinxin [1 ]
Yang, Zhi [1 ]
Liu, Yifo [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Coll Mech & Elect Engn, Xian 710021, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon fiber; Oriented distribution; Bio-ceramic; Magnesium-doped hydroxyapatite; Mechanical properties; Tribological properties; PROMOTING BONE-FORMATION; MATRIX COMPOSITES; PEEK COMPOSITES; NANOCOMPOSITE; SCAFFOLDS; CERAMICS; DESIGN; DAMAGE;
D O I
10.1016/j.matchemphys.2023.128078
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon fiber (CF) reinforced magnesium-doped hydroxyapatite (Mg-HA) composites have been shown possess excellent mechanical performance and tailored biological properties. In order to further explore the effect of the orientation for short CF reinforced Mg-HA composites for mechanical and tribological properties. Micro-sized CF was oriented in Mg-HA by a self-developed mold and highly oriented CF reinforced magnesium doped hydroxyapatite (OCF/Mg-HA) composites were prepared by spark plasma sintering (SPS). The morphology, structure, wettability, mechanical properties and tribological properties of the composites were investigated. The results show that the average contact angle of oriented CF/Mg-HA composites was 67.65 degrees and had good hydrophilicity. Compressive strength of OCF/Mg-HA in the direction parallel to the fiber was 129.8 MPa, which met the requirements of mechanical properties of human cortical bone. In addition, the wear resistance of OCF/MgHA ceramics was significantly improved by the addition of CF. The average friction coefficient of OCF/Mg-HA ceramics in the direction parallel to the fiber was 0.157. OCF/Mg-HA ceramics exhibited excellent tribological properties and mechanical properties which were close to that of human load-bearing bone due to the oriented arrangement of CF. This laid a foundation for the clinical application of OCF/Mg-HA ceramics in the repair of bone defects at load-bearing sites.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Preparation and mechanical properties of controllable orthogonal arrangement of carbon fiber reinforced hydroxyapatite composites
    Zhao, Xueni
    Zhang, Li
    Wang, Xudong
    Yang, Jianjun
    He, Fuzhen
    Wang, Yao
    CERAMICS INTERNATIONAL, 2018, 44 (07) : 8322 - 8333
  • [22] Fiber orientation dependence of tribological behavior of short carbon fiber reinforced ceramic matrix composites
    Zhou, Wei
    Meiser, Matthias
    Wich, Felix
    Liensdorf, Tom
    Freudenberg, Wolfgang
    Li, Yang
    Langhof, Nico
    Krenkel, Walter
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2022, 105 (01) : 538 - 552
  • [23] MECHANICAL PROPERTIES TESTING OF CARBON FIBER REINFORCED COMPOSITES
    Fu M.
    Yu X.
    Ying S.
    International Journal of Mechatronics and Applied Mechanics, 2022, 2022 (11): : 286 - 294
  • [24] Mechanical properties of carbon fiber felt reinforced composites
    Kim, J
    Shioya, M
    Kaneko, J
    Kido, M
    SEN-I GAKKAISHI, 2001, 57 (11) : 317 - 325
  • [25] Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites
    Wang, Chuang
    Li, Ke-Zhi
    Li, He-Jun
    Jiao, Geng-Sheng
    Lu, Jinhua
    Hou, Dang-She
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 487 (1-2): : 52 - 57
  • [26] Mechanical and tribological properties of short glass fiber and short carbon fiber reinforced polyethersulfone composites: A comparative study
    Zhao, Ze-Kun
    Du, Sen-Sen
    Li, Fei
    Xiao, Hong-Mei
    Li, Yuan-Qing
    Zhang, Wei-Gang
    Hu, Ning
    Fu, Shao-Yun
    COMPOSITES COMMUNICATIONS, 2018, 8 : 1 - 6
  • [27] Tensile properties of coated carbon fiber reinforced magnesium composites
    Zhang, K
    Wang, YQ
    Zhou, BL
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 1997, 7 (03) : 86 - 89
  • [29] Tensile properties of coated carbon fiber reinforced magnesium composites
    Trans Nonferrous Met Soc China, 3 (86-89):
  • [30] Effect of Fiber Orientation on Mechanical Properties of Sisal Fiber Reinforced Epoxy Composites
    Kumaresan, M.
    Sathish, S.
    Karthi, N.
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2015, 18 (03): : 289 - 294