Learning a robust unified domain adaptation framework for cross-subject EEG-based emotion recognition

被引:16
|
作者
Jimenez-Guarneros, Magdiel [1 ]
Fuentes-Pineda, Gibran [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Dept Comp Sci, Inst Invest Matemat Aplicadas & Sistemas, Circuito Escolar S-N,Ciudad Univ, Mexico City 04510, Mexico
关键词
Unsupervised domain adaptation; Deep learning; Emotion recognition; Electroencephalogram; NEURAL-NETWORKS;
D O I
10.1016/j.bspc.2023.105138
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Over the last few years, unsupervised domain adaptation (UDA) based on deep learning has emerged as a solution to build cross-subject emotion recognition models from Electroencephalogram (EEG) signals, aligning the subject distributions within a latent feature space. However, most reported works have a common intrinsic limitation: the subject distribution alignment is coarse-grained, but not all of the feature space is shared between subjects. In this paper, we propose a robust unified domain adaptation framework, named Multi-source Feature Alignment and Label Rectification (MFA-LR), which performs a fine-grained domain alignment at subject and class levels, while inter-class separation and robustness against input perturbations are encouraged in coarse grain. As a complementary step, a pseudo-labeling correction procedure is used to rectify mislabeled target samples. Our proposal was assessed over two public datasets, SEED and SEED-IV, on each of the three available sessions, using leave-one-subject-out cross-validation. Experimental results show an accuracy performance of up to 89.11 & PLUSMN; 07.72% and 74.99 & PLUSMN; 12.10% for the best session on SEED and SEED-IV, as well as an average accuracy of 85.27% and 69.58% on all three sessions, outperforming state-of-the-art results.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A novel multi-source contrastive learning approach for robust cross-subject emotion recognition in EEG data
    Deng, Xin
    Li, Chenhui
    Hong, Xinyi
    Huo, Huaxiang
    Qin, Hongxing
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 97
  • [42] Cross-subject emotion EEG signal recognition based on source microstate analysis
    Zhang, Lei
    Xiao, Di
    Guo, Xiaojing
    Li, Fan
    Liang, Wen
    Zhou, Bangyan
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [43] SATEER: Subject-Aware Transformer for EEG-Based Emotion Recognition
    Lanzino, Romeo
    Avola, Danilo
    Fontana, Federico
    Cinque, Luigi
    Scarcello, Francesco
    Foresti, Gian Luca
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2025, 35 (02)
  • [44] A deep subdomain associate adaptation network for cross-session and cross-subject EEG emotion recognition
    Meng, Ming
    Hu, Jiahao
    Gao, Yunyuan
    Kong, Wanzeng
    Luo, Zhizeng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [45] MSS-JDA: Multi-Source Self-Selected Joint Domain Adaptation method based on cross-subject EEG emotion recognition
    Chen, Shinan
    Ma, Weifeng
    Wang, Yuchen
    Sun, Xiaoyong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [46] MGFKD: A semi-supervised multi-source domain adaptation algorithm for cross-subject EEG emotion recognition
    Zhang, Rui
    Guo, Huifeng
    Xu, Zongxin
    Hu, Yuxia
    Chen, Mingming
    Zhang, Lipeng
    BRAIN RESEARCH BULLETIN, 2024, 208
  • [47] Cross-Subject Emotion Recognition Using Deep Adaptation Networks
    Li, He
    Jin, Yi-Ming
    Zheng, Wei-Long
    Lu, Bao-Liang
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT V, 2018, 11305 : 403 - 413
  • [48] Cross-Subject Multimodal Emotion Recognition Based on Hybrid Fusion
    Cimtay, Yucel
    Ekmekcioglu, Erhan
    Caglar-Ozhan, Seyma
    IEEE ACCESS, 2020, 8 : 168865 - 168878
  • [49] WeDea: A New EEG-Based Framework for Emotion Recognition
    Kim, Sun-Hee
    Yang, Hyung-Jeong
    Ngoc Anh Thi Nguyen
    Prabhakar, Sunil Kumar
    Lee, Seong-Whan
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (01) : 264 - 275
  • [50] EEG-Based Cross-Subject Driver Drowsiness Recognition With an Interpretable Convolutional Neural Network
    Cui, Jian
    Lan, Zirui
    Sourina, Olga
    Muller-Wittig, Wolfgang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7921 - 7933