共 64 条
Learning a robust unified domain adaptation framework for cross-subject EEG-based emotion recognition
被引:19
作者:
Jimenez-Guarneros, Magdiel
[1
]
Fuentes-Pineda, Gibran
[1
]
机构:
[1] Univ Nacl Autonoma Mexico, Dept Comp Sci, Inst Invest Matemat Aplicadas & Sistemas, Circuito Escolar S-N,Ciudad Univ, Mexico City 04510, Mexico
关键词:
Unsupervised domain adaptation;
Deep learning;
Emotion recognition;
Electroencephalogram;
NEURAL-NETWORKS;
D O I:
10.1016/j.bspc.2023.105138
中图分类号:
R318 [生物医学工程];
学科分类号:
0831 ;
摘要:
Over the last few years, unsupervised domain adaptation (UDA) based on deep learning has emerged as a solution to build cross-subject emotion recognition models from Electroencephalogram (EEG) signals, aligning the subject distributions within a latent feature space. However, most reported works have a common intrinsic limitation: the subject distribution alignment is coarse-grained, but not all of the feature space is shared between subjects. In this paper, we propose a robust unified domain adaptation framework, named Multi-source Feature Alignment and Label Rectification (MFA-LR), which performs a fine-grained domain alignment at subject and class levels, while inter-class separation and robustness against input perturbations are encouraged in coarse grain. As a complementary step, a pseudo-labeling correction procedure is used to rectify mislabeled target samples. Our proposal was assessed over two public datasets, SEED and SEED-IV, on each of the three available sessions, using leave-one-subject-out cross-validation. Experimental results show an accuracy performance of up to 89.11 & PLUSMN; 07.72% and 74.99 & PLUSMN; 12.10% for the best session on SEED and SEED-IV, as well as an average accuracy of 85.27% and 69.58% on all three sessions, outperforming state-of-the-art results.
引用
收藏
页数:13
相关论文