Enumerating Steiner triple systems

被引:2
|
作者
Heinlein, Daniel [1 ,2 ]
Ostergard, Patric R. J. [1 ]
机构
[1] Aalto Univ, Sch Elect Engn, Dept Informat & Commun Engn, Aalto, Finland
[2] Aalto Univ, Sch Elect Engn, Dept Informat & Commun Engn, POB 15400, Aalto 00076, Finland
基金
芬兰科学院;
关键词
classification; counting; regular graph; Steiner triple system; FAST GENERATION; LATIN SQUARES; ORDER; 21; GRAPHS;
D O I
10.1002/jcd.21906
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Steiner triple systems (STSs) have been classified up to order 19. Earlier estimations of the number of isomorphism classes of STSs of order 21, the smallest open case, are discouraging as for classification, so it is natural to focus on the easier problem of merely counting the isomorphism classes. Computational approaches for counting STSs are here considered and lead to an algorithm that is used to obtain the number of isomorphism classes for order 21: 14,796,207,517,873,771.
引用
收藏
页码:479 / 495
页数:17
相关论文
共 50 条
  • [31] Trinal Decompositions of Steiner Triple Systems into Triangles
    Lindner, Charles C.
    Meszka, Mariusz
    Rosa, Alexander
    JOURNAL OF COMBINATORIAL DESIGNS, 2013, 21 (05) : 204 - 211
  • [32] A new method of constructing Steiner triple systems
    Li, Xiaoyi
    Xu, Zhaodi
    Chou, Wanxi
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 3760 - +
  • [33] Watermark design based on Steiner triple systems
    Yang, Zhi-Fang
    Chiou, Shyh-Shin
    Lee, Jun-Ting
    MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 72 (03) : 2177 - 2194
  • [34] On 6-sparse Steiner triple systems
    Forbes, A. D.
    Grannell, M. J.
    Griggs, T. S.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (02) : 235 - 252
  • [35] Egalitarian Steiner triple systems for data popularity
    Charles J. Colbourn
    Designs, Codes and Cryptography, 2021, 89 : 2373 - 2395
  • [36] Watermark design based on Steiner triple systems
    Zhi-Fang Yang
    Shyh-Shin Chiou
    Jun-Ting Lee
    Multimedia Tools and Applications, 2014, 72 : 2177 - 2194
  • [37] Steiner triple systems with disjoint or intersecting subsystems
    Colbourn, CJ
    Oravas, MA
    Rees, RS
    JOURNAL OF COMBINATORIAL DESIGNS, 2000, 8 (01) : 58 - 77
  • [38] Steiner triple systems with two disjoint subsystems
    Bryant, D
    Horsley, D
    JOURNAL OF COMBINATORIAL DESIGNS, 2006, 14 (01) : 14 - 24
  • [39] Steiner triple systems of order 19 and 21 with subsystems of order 7
    Kaski, Petteri
    Ostergard, Patric R. J.
    Topalova, Svetlana
    Zlatarski, Rosen
    DISCRETE MATHEMATICS, 2008, 308 (13) : 2732 - 2741
  • [40] Large Sets of Mutually Almost Disjoint Steiner Triple Systems Not from Steiner Quadruple Systems
    Franek F.
    Rosa A.
    Griggs T.S.
    Designs, Codes and Cryptography, 1997, 12 (1) : 59 - 67