Enumerating Steiner triple systems

被引:2
|
作者
Heinlein, Daniel [1 ,2 ]
Ostergard, Patric R. J. [1 ]
机构
[1] Aalto Univ, Sch Elect Engn, Dept Informat & Commun Engn, Aalto, Finland
[2] Aalto Univ, Sch Elect Engn, Dept Informat & Commun Engn, POB 15400, Aalto 00076, Finland
基金
芬兰科学院;
关键词
classification; counting; regular graph; Steiner triple system; FAST GENERATION; LATIN SQUARES; ORDER; 21; GRAPHS;
D O I
10.1002/jcd.21906
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Steiner triple systems (STSs) have been classified up to order 19. Earlier estimations of the number of isomorphism classes of STSs of order 21, the smallest open case, are discouraging as for classification, so it is natural to focus on the easier problem of merely counting the isomorphism classes. Computational approaches for counting STSs are here considered and lead to an algorithm that is used to obtain the number of isomorphism classes for order 21: 14,796,207,517,873,771.
引用
收藏
页码:479 / 495
页数:17
相关论文
共 50 条
  • [1] ENUMERATION OF STEINER TRIPLE SYSTEMS WITH SUBSYSTEMS
    Kaski, Petteri
    Ostergard, Patric R. J.
    Popa, Alexandru
    MATHEMATICS OF COMPUTATION, 2015, 84 (296) : 3051 - 3067
  • [2] Methods of Constructing and Enumerating the Steiner triple System with Order 31
    Li Xiao-yi
    Xu Zhao-di
    Chou Wan-xi
    APPLIED SCIENCE, MATERIALS SCIENCE AND INFORMATION TECHNOLOGIES IN INDUSTRY, 2014, 513-517 : 3061 - 3064
  • [3] STEINER TRIPLE SYSTEMS OF ORDER 21 WITH SUBSYSTEMS
    Heinlein, Daniel
    Ostergard, Patric R. J.
    GLASNIK MATEMATICKI, 2023, 58 (02) : 233 - 245
  • [4] High-girth Steiner triple systems
    Kwan, Matthew
    Sah, Ashwin
    Sawhney, Mehtaab
    Simkin, Michael
    ANNALS OF MATHEMATICS, 2024, 200 (03) : 1059 - 1156
  • [5] On colourings of Steiner triple systems
    Forbes, AD
    Grannell, MJ
    Griggs, TS
    DISCRETE MATHEMATICS, 2003, 261 (1-3) : 255 - 276
  • [6] Quasi-embeddings of Steiner triple systems, or Steiner triple systems of different orders with maximum intersection
    Dukes, P
    Mendelsohn, E
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (02) : 120 - 138
  • [7] Subcubic trades in Steiner triple systems
    Cavenagh, Nicholas J.
    Griggs, Terry S.
    DISCRETE MATHEMATICS, 2017, 340 (06) : 1351 - 1358
  • [8] Nonorientable biembeddings of Steiner triple systems
    Grannell, MJ
    Korzhik, VP
    DISCRETE MATHEMATICS, 2004, 285 (1-3) : 121 - 126
  • [9] On the Block Coloring of Steiner Triple Systems
    Manaviyat, R.
    JOURNAL OF MATHEMATICAL EXTENSION, 2014, 8 (03) : 71 - 77
  • [10] Representing Graphs in Steiner Triple Systems
    Dan Archdeacon
    Terry Griggs
    Costas Psomas
    Graphs and Combinatorics, 2014, 30 : 255 - 266