Hybridised multigrid preconditioners for a compatible finite-element dynamical core

被引:1
|
作者
Betteridge, Jack D. D. [1 ]
Cotter, Colin J. J. [1 ]
Gibson, Thomas H. H. [2 ,3 ]
Griffith, Matthew J. J. [4 ,5 ]
Melvin, Thomas [6 ]
Muller, Eike H. H. [4 ]
机构
[1] Imperial Coll, Dept Math, London, England
[2] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL USA
[3] Adv Micro Devices Inc, HPC Applicat Performance Team, Austin, TX USA
[4] Univ Bath, Dept Math Sci, Bath BA2 7EX, England
[5] European Ctr Medium Range Weather Forecasts, Forecast Dept, Reading, England
[6] Met Off, Dynam Res, Exeter, England
基金
英国工程与自然科学研究理事会;
关键词
atmosphere; dynamics; finite-element discretisation; hybridisation; linear solvers; multigrid; numerical methods and NWP; parallel scalability; EXTERIOR CALCULUS; MODEL; EXPLICIT; WEATHER; H(DIV);
D O I
10.1002/qj.4515
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Compatible finite-element discretisations for the atmospheric equations of motion have recently attracted considerable interest. Semi-implicit timestepping methods require the repeated solution of a large saddle-point system of linear equations. Preconditioning this system is challenging, since the velocity mass matrix is nondiagonal, leading to a dense Schur complement. Hybridisable discretisations overcome this issue: weakly enforcing continuity of the velocity field with Lagrange multipliers leads to a sparse system of equations, which has a similar structure to the pressure Schur complement in traditional approaches. We describe how the hybridised sparse system can be preconditioned with a non-nested two-level preconditioner. To solve the coarse system, we use the multigrid pressure solver that is employed in the approximate Schur complement method previously proposed by the some of the authors. Our approach significantly reduces the number of solver iterations. The method shows excellent performance and scales to large numbers of cores in the Met Office next-generation climate and weather prediction model LFRic.
引用
收藏
页码:2454 / 2476
页数:23
相关论文
共 50 条
  • [11] Multigrid for the mortar finite element for parabolic problem
    Xu, XJ
    Chen, JR
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2003, 21 (04) : 411 - 420
  • [12] Adaptive multigrid for finite element computations in plasticity
    Ekevid, T
    Kettil, P
    Wiberg, NE
    COMPUTERS & STRUCTURES, 2004, 82 (28) : 2413 - 2424
  • [13] MULTIGRID FOR THE MORTAR FINITE ELEMENT FOR PARABOLIC PROBLEM
    Xue-jun Xu(LSEC
    Journal of Computational Mathematics, 2003, (04) : 411 - 420
  • [14] Finite-Element Modelling of Biotransistors
    MW Shinwari
    MJ Deen
    PR Selvaganapathy
    Nanoscale Research Letters, 5
  • [15] FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS
    Kuhnlein, Christian
    Deconinck, Willem
    Klein, Rupert
    Malardel, Sylvie
    Piotrowski, Zbigniew P.
    Smolarkiewicz, Piotr K.
    Szmelter, Joanna
    Wedi, Nils P.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2019, 12 (02) : 651 - 676
  • [16] Finite-Element Modelling of Biotransistors
    Shinwari, M. W.
    Deen, M. J.
    Selvaganapathy, P. R.
    NANOSCALE RESEARCH LETTERS, 2010, 5 (03): : 494 - 500
  • [17] A finite element multigrid-framework to solve the sea ice momentum equation
    Mehlmann, C.
    Richter, T.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 348 : 847 - 861
  • [18] Liquefaction Mapping in Finite-Element Simulations
    Ellison, Kirk C.
    Andrade, Jose E.
    JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2009, 135 (11) : 1693 - 1701
  • [19] Dynamical micromagnetics by the finite element method
    Yang, B
    Fredkin, DR
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (06) : 3842 - 3852
  • [20] A finite element multigrid preconditioner for Chebyshev-collocation methods
    Shen, J
    Wang, F
    Xu, JC
    APPLIED NUMERICAL MATHEMATICS, 2000, 33 (1-4) : 471 - 477