Multi-stage glaucoma classification using pre-trained convolutional neural networks and voting-based classifier fusion

被引:20
|
作者
Velpula, Vijaya Kumar [1 ]
Sharma, Lakhan Dev [1 ]
机构
[1] VIT AP Univ, Sch Elect Engn, Amaravati, Andhra Prades, India
关键词
convolutional neural network; classifier fusion; deep learning; fundus image; hybrid model; transfer learning; FUNDUS IMAGES; WAVELET TRANSFORM; EXPERT-SYSTEM; OPTIC DISC; IDENTIFICATION; SEGMENTATION; DIAGNOSIS;
D O I
10.3389/fphys.2023.1175881
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Aim: To design an automated glaucoma detection system for early detection of glaucoma using fundus images.Background: Glaucoma is a serious eye problem that can cause vision loss and even permanent blindness. Early detection and prevention are crucial for effective treatment. Traditional diagnostic approaches are time consuming, manual, and often inaccurate, thus making automated glaucoma diagnosis necessary.Objective: To propose an automated glaucoma stage classification model using pre-trained deep convolutional neural network (CNN) models and classifier fusion.Methods: The proposed model utilized five pre-trained CNN models: ResNet50, AlexNet, VGG19, DenseNet-201, and Inception-ResNet-v2. The model was tested using four public datasets: ACRIMA, RIM-ONE, Harvard Dataverse (HVD), and Drishti. Classifier fusion was created to merge the decisions of all CNN models using the maximum voting-based approach.Results: The proposed model achieved an area under the curve of 1 and an accuracy of 99.57% for the ACRIMA dataset. The HVD dataset had an area under the curve of 0.97 and an accuracy of 85.43%. The accuracy rates for Drishti and RIM-ONE were 90.55 and 94.95%, respectively. The experimental results showed that the proposed model performed better than the state-of-the-art methods in classifying glaucoma in its early stages. Understanding the model output includes both attribution-based methods such as activations and gradient class activation map and perturbation-based methods such as locally interpretable model-agnostic explanations and occlusion sensitivity, which generate heatmaps of various sections of an image for model prediction.Conclusion: The proposed automated glaucoma stage classification model using pre-trained CNN models and classifier fusion is an effective method for the early detection of glaucoma. The results indicate high accuracy rates and superior performance compared to the existing methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Glaucoma detection using novel perceptron based convolutional multi-layer neural network classification
    Mansour, Romany F.
    Al-Marghilnai, Abdulsamad
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2021, 32 (04) : 1217 - 1235
  • [32] Pre-trained deep convolutional neural networks for the segmentation of malignant pleural mesothelioma tumor on CT scans
    Gudmundsson, Eyjolfur
    Straus, Christopher M.
    Armato, Samuel G., III
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [33] Application of Pre-Trained Deep Convolutional Neural Networks for Coffee Beans Species Detection
    Unal, Yavuz
    Taspinar, Yavuz Selim
    Cinar, Ilkay
    Kursun, Ramazan
    Koklu, Murat
    FOOD ANALYTICAL METHODS, 2022, 15 (12) : 3232 - 3243
  • [34] Application of Pre-Trained Deep Convolutional Neural Networks for Coffee Beans Species Detection
    Yavuz Unal
    Yavuz Selim Taspinar
    Ilkay Cinar
    Ramazan Kursun
    Murat Koklu
    Food Analytical Methods, 2022, 15 : 3232 - 3243
  • [35] Exploiting Pre-Trained Convolutional Neural Networks for the Detection of Nutrient Deficiencies in Hydroponic Basil
    Gul, Zeki
    Bora, Sebnem
    SENSORS, 2023, 23 (12)
  • [36] Object Recognition using Template Matching and Pre-trained convolutional neural network
    Abbas, Qaisar
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2020, 20 (08): : 69 - 79
  • [37] An efficient brain tumor detection and classification using pre-trained convolutional neural network models
    Rao, K. Nishanth
    Khalaf, Osamah Ibrahim
    Krishnasree, V.
    Kumar, Aruru Sai
    Alsekait, Deema Mohammed
    Priyanka, S. Siva
    Alattas, Ahmed Saleh
    AbdElminaam, Diaa Salama
    HELIYON, 2024, 10 (17)
  • [38] A pre-trained convolutional neural network based method for thyroid nodule diagnosis
    Ma, Jinlian
    Wu, Fa
    Zhu, Jiang
    Xu, Dong
    Kong, Dexing
    ULTRASONICS, 2017, 73 : 221 - 230
  • [39] Classification of Freshwater Zooplankton by Pre-trained Convolutional Neural Network in Underwater Microscopy
    Hong, Song
    Mehdi, Syed Raza
    Huang, Hui
    Shahani, Kamran
    Zhang, Yangfang
    Junaidullah
    Raza, Kazim
    Khan, Mushtaq Ali
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (07) : 252 - 258
  • [40] Detection of new coronavirus disease from chest x-ray images using pre-trained convolutional neural networks
    Narin, Ali
    Isler, Yalcin
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2021, 36 (04): : 2095 - 2107