Multi-stage glaucoma classification using pre-trained convolutional neural networks and voting-based classifier fusion

被引:20
|
作者
Velpula, Vijaya Kumar [1 ]
Sharma, Lakhan Dev [1 ]
机构
[1] VIT AP Univ, Sch Elect Engn, Amaravati, Andhra Prades, India
关键词
convolutional neural network; classifier fusion; deep learning; fundus image; hybrid model; transfer learning; FUNDUS IMAGES; WAVELET TRANSFORM; EXPERT-SYSTEM; OPTIC DISC; IDENTIFICATION; SEGMENTATION; DIAGNOSIS;
D O I
10.3389/fphys.2023.1175881
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Aim: To design an automated glaucoma detection system for early detection of glaucoma using fundus images.Background: Glaucoma is a serious eye problem that can cause vision loss and even permanent blindness. Early detection and prevention are crucial for effective treatment. Traditional diagnostic approaches are time consuming, manual, and often inaccurate, thus making automated glaucoma diagnosis necessary.Objective: To propose an automated glaucoma stage classification model using pre-trained deep convolutional neural network (CNN) models and classifier fusion.Methods: The proposed model utilized five pre-trained CNN models: ResNet50, AlexNet, VGG19, DenseNet-201, and Inception-ResNet-v2. The model was tested using four public datasets: ACRIMA, RIM-ONE, Harvard Dataverse (HVD), and Drishti. Classifier fusion was created to merge the decisions of all CNN models using the maximum voting-based approach.Results: The proposed model achieved an area under the curve of 1 and an accuracy of 99.57% for the ACRIMA dataset. The HVD dataset had an area under the curve of 0.97 and an accuracy of 85.43%. The accuracy rates for Drishti and RIM-ONE were 90.55 and 94.95%, respectively. The experimental results showed that the proposed model performed better than the state-of-the-art methods in classifying glaucoma in its early stages. Understanding the model output includes both attribution-based methods such as activations and gradient class activation map and perturbation-based methods such as locally interpretable model-agnostic explanations and occlusion sensitivity, which generate heatmaps of various sections of an image for model prediction.Conclusion: The proposed automated glaucoma stage classification model using pre-trained CNN models and classifier fusion is an effective method for the early detection of glaucoma. The results indicate high accuracy rates and superior performance compared to the existing methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Alzheimer's disease classification using pre-trained deep networks
    Shanmugam, Jayanthi Venkatraman
    Duraisamy, Baskar
    Simon, Blessy Chittattukarakkaran
    Bhaskaran, Preethi
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [22] ConvTimeNet: A Pre-trained Deep Convolutional Neural Network for Time Series Classification
    Kashiparekh, Kathan
    Narwariya, Jyoti
    Malhotra, Pankaj
    Vig, Lovekesh
    Shroff, Gautam
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [23] Recognizing Malaysia Traffic Signs with Pre-Trained Deep Convolutional Neural Networks
    How, Dickson Neoh Tze
    Sahari, Khairul Salleh Mohamed
    Hou, Yew Cheong
    Basubeit, Omar Gumaan Saleh
    2019 4TH INTERNATIONAL CONFERENCE ON CONTROL, ROBOTICS AND CYBERNETICS (CRC 2019), 2019, : 109 - 113
  • [24] Late fusion of pre-trained networks for satellite image classification
    Mehmood, Asif
    PATTERN RECOGNITION AND TRACKING XXXIII, 2022, 12101
  • [25] Pre-Trained Convolutional Neural Network for Classification of Tanning Leather Image
    Winiarti, Sri
    Prahara, Adhi
    Murinto
    Ismi, Dewi Pramudi
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (01) : 212 - 217
  • [26] An Efficient Method for Breast Mass Classification Using Pre-Trained Deep Convolutional Networks
    Al-Mansour, Ebtihal
    Hussain, Muhammad
    Aboalsamh, Hatim A.
    Fazal-e-Amin
    MATHEMATICS, 2022, 10 (14)
  • [27] Classification of Atrial Fibrillation with Pre-Trained Convolutional Neural Network Models
    Qayyum, Abdul
    Meriaudeau, Fabrice
    Chan, Genevieve C. Y.
    2018 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2018, : 594 - 599
  • [28] Ensemble learning based lung and colon cancer classification with pre-trained deep neural networks
    Savas, Serkan
    Guler, Osman
    HEALTH AND TECHNOLOGY, 2025, 15 (01) : 105 - 117
  • [29] Performance Improvement Of Pre-trained Convolutional Neural Networks For Action Recognition
    Ozcan, Tayyip
    Basturk, Alper
    COMPUTER JOURNAL, 2021, 64 (11): : 1715 - 1730
  • [30] Pre-trained convolutional neural networks as feature extractors for tuberculosis detection
    Lopes, U. K.
    Valiati, J. F.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 : 135 - 143