Induced Pluripotent Stem Cell-Derived Extracellular Vesicles Promote Wound Repair in a Diabetic Mouse Model via an Anti-Inflammatory Immunomodulatory Mechanism

被引:12
|
作者
Levy, Daniel [1 ]
Abadchi, Sanaz Nourmohammadi [2 ]
Shababi, Niloufar [2 ]
Ravari, Mohsen Rouhani [2 ]
Pirolli, Nicholas H. [1 ]
Bergeron, Cade [1 ]
Obiorah, Angel [1 ]
Mokhtari-Esbuie, Farzad [2 ]
Gheshlaghi, Shayan [2 ]
Abraham, John M. [2 ]
Smith, Ian M. [1 ]
Powsner, Emily H. [1 ]
Solomon, Talia J. [1 ]
Harmon, John W. [2 ]
Jay, Steven M. [1 ,3 ]
机构
[1] Univ Maryland, Fischell Dept Bioengn, College Pk, MD 20742 USA
[2] Johns Hopkins Univ, Dept Surg, Sch Med, Baltimore, MD 21224 USA
[3] Univ Maryland, Program Mol & Cell Biol, College Pk, MD 20742 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
exosomes; induced pluripotent stem cells; induced pluripotent stem cell-mesenchymal stem; stromal cells; inflammation; wound healing; MESENCHYMAL STROMAL CELLS; INFLAMMATION; EXOSOMES; PERSPECTIVE; CHALLENGES;
D O I
10.1002/adhm.202300879
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Extracellular vesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) have recently been explored in clinical trials for treatment of diseases with complex pathophysiologies. However, production of MSC EVs is currently hampered by donor-specific characteristics and limited ex vivo expansion capabilities before decreased potency, thus restricting their potential as a scalable and reproducible therapeutic. Induced pluripotent stem cells (iPSCs) represent a self-renewing source for obtaining differentiated iPSC-derived MSCs (iMSCs), circumventing both scalability and donor variability concerns for therapeutic EV production. Thus, it is initially sought to evaluate the therapeutic potential of iMSC EVs. Interestingly, while utilizing undifferentiated iPSC EVs as a control, it is found that their vascularization bioactivity is similar and their anti-inflammatory bioactivity is superior to donor-matched iMSC EVs in cell-based assays. To supplement this initial in vitro bioactivity screen, a diabetic wound healing mouse model where both the pro-vascularization and anti-inflammatory activity of these EVs would be beneficial is employed. In this in vivo model, iPSC EVs more effectively mediate inflammation resolution within the wound bed. Combined with the lack of additional differentiation steps required for iMSC generation, these results support the use of undifferentiated iPSCs as a source for therapeutic EV production with respect to both scalability and efficacy.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Mesenchymal stem cell-derived extracellular vesicles promote corneal wound repair
    Ritter, Thomas
    O'Malley, Grace A.
    Lohan, Paul
    Ryan, Aideen
    Griffin, Matthew
    Rani, Sweta
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (07)
  • [2] Mesenchymal Stem Cell-Derived Extracellular Vesicles for Corneal Wound Repair
    Tao, Hongyan
    Chen, Xiaoniao
    Cao, Hongmei
    Zheng, Lingyue
    Li, Qian
    Zhang, Kaiyue
    Han, Zhibo
    Han, Zhong-Chao
    Guo, Zhikun
    Li, Zongjin
    Wang, Liqiang
    STEM CELLS INTERNATIONAL, 2019, 2019
  • [3] Hypoxic Conditions Promote the Angiogenic Potential of Human Induced Pluripotent Stem Cell-Derived Extracellular Vesicles
    Andrade, Andre Cronemberger
    Wolf, Martin
    Binder, Heide-Marie
    Gomes, Fausto Gueths
    Manstein, Felix
    Ebner-Peking, Patricia
    Poupardin, Rodolphe
    Zweigerdt, Robert
    Schallmoser, Katharina
    Strunk, Dirk
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (08)
  • [4] Extracellular Vesicles Released by Human Induced-Pluripotent Stem Cell-Derived Cardiomyocytes Promote Angiogenesis
    Dougherty, Julie A.
    Kumar, Naresh
    Noor, Mohammad
    Angelos, Mark G.
    Khan, Mohsin
    Chen, Chun-An
    Khan, Mahmood
    FRONTIERS IN PHYSIOLOGY, 2018, 9
  • [5] Mechanism of Cardiac Repair in Rat Myocardial Infarction Model Treated with Extracellular Vesicles from Differentiating Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Tominaga, Yuji
    Miyagawa, Shigeru
    Kawamura, Takuji
    Ito, Emiko
    Takeda, Maki
    Nakae, Masaro
    Harada, Akima
    Sawa, Yoshiki
    CIRCULATION, 2021, 144
  • [6] Stem Cell-Derived Extracellular Vesicles: Promising Therapeutic Opportunities for Diabetic Wound Healing
    Zhang, Boyu
    Bi, Yajun
    Wang, Kang
    Guo, Xingjun
    Liu, Zeming
    Li, Jia
    Wu, Min
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2024, 19 : 4357 - 4375
  • [7] Mesenchymal Stem Cell-Derived Extracellular Vesicles as Mediators of Anti-Inflammatory Effects: Endorsement of Macrophage Polarization
    Lo Sicco, Claudia
    Reverberi, Daniele
    Balbi, Carolina
    Ulivi, Valentina
    Principi, Elisa
    Pascucci, Luisa
    Becherini, Pamela
    Bosco, Maria Carla
    Varesio, Luigi
    Franzin, Chiara
    Pozzobon, Michela
    Cancedda, Ranieri
    Tasso, Roberta
    STEM CELLS TRANSLATIONAL MEDICINE, 2017, 6 (03) : 1018 - 1028
  • [8] The anti-inflammatory effects of equine bone marrow stem cell-derived extracellular vesicles on autologous chondrocytes
    Hotham, William Edward
    Thompson, Charlotte
    Lin Szu-Ting
    Henson, Frances Margaret Daphne
    VETERINARY RECORD OPEN, 2021, 8 (01)
  • [9] Induced pluripotent stem cell-derived extracellular vesicles enriched with miR-126 induce proangiogenic properties and promote repair of ischemic tissue
    Kmiotek-Wasylewska, Katarzyna
    Labedz-Maslowska, Anna
    Bobis-Wozowicz, Sylwia
    Karnas, Elzbieta
    Noga, Sylwia
    Sekula-Stryjewska, Malgorzata
    Woznicka, Olga
    Madeja, Zbigniew
    Dawn, Buddhadeb
    Zuba-Surma, Ewa K.
    FASEB JOURNAL, 2024, 38 (02):
  • [10] Peptidomic profiling of mesenchymal stem cell-derived extracellular vesicles and anti-inflammatory activity of degraded peptides
    Chu, Tianqi
    Xiao, Zixuan
    Xun, Chengfeng
    Yang, Chunyan
    Lu, Mengqi
    Wang, Yuqiu
    Chen, Haiyan
    Chen, Ping
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2025, 152