A Compressed Unsupervised Deep Domain Adaptation Model for Efficient Cross-Domain Fault Diagnosis

被引:24
作者
Xu, Gaowei [1 ]
Huang, Chenxi [1 ]
Silva, Daniel Santos da [2 ]
Albuquerque, Victor Hugo C. de [2 ]
机构
[1] Xiamen Univ, Sch Informat, Xiamen 361003, Peoples R China
[2] Univ Fed Ceara, Dept Teleinformat Engn, BR-60020181 Fortaleza, Brazil
关键词
Fault diagnosis; Feature extraction; Computational modeling; Data models; Adaptation models; Testing; Standards; Channel pruning; edge devices; efficient fault diagnosis; maximum mean discrepancy (MMD); unsupervised deep domain adaption (UDDA); NETWORK;
D O I
10.1109/TII.2022.3183225
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As one of the most important artificial intelligence-enabled industrial applications, fault diagnosis is vital in the safe, stable, and reliable operation of the equipment. Many existing deep learning-based fault diagnosis methods assume that the distribution of training data is the same as that of testing data, which is almost impossible in practical industrial applications. In addition, most of these fault diagnosis methods are generally memory-intensive and computationally expensive. A compressed unsupervised deep domain adaption model-based fault diagnosis method is proposed to overcome the abovementioned two issues. First, a standard unsupervised domain adaption model is designed to extract the features of training data and testing data, respectively. Then, the maximum mean discrepancy term is introduced to minimize the discrepancy between the extracted features of them. Next, the standard model is compressed through iteratively pruning the redundant convolutional channels. Finally, the obtained compressed model is applied to diagnose faults. The performance of the proposed method is verified on the Case Western Reserve University bearing dataset. Experimental results show that the compressed model can significantly reduce the memory occupation, computational cost, and inference time compared with the standard model, but still achieve comparable or even better accuracy on ten transfer diagnostic tasks.
引用
收藏
页码:6741 / 6749
页数:9
相关论文
共 50 条
  • [31] A cross-domain intelligent fault diagnosis method based on deep subdomain adaptation for few-shot fault diagnosis
    Bo Wang
    Meng Zhang
    Hao Xu
    Chao Wang
    Wenlong Yang
    Applied Intelligence, 2023, 53 : 24474 - 24491
  • [32] Deep Model Based Domain Adaptation for Fault Diagnosis
    Lu, Weining
    Liang, Bin
    Cheng, Yu
    Meng, Deshan
    Yang, Jun
    Zhang, Tao
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (03) : 2296 - 2305
  • [33] Adversarial Domain Adaptation With Dual Auxiliary Classifiers for Cross-Domain Open-Set Intelligent Fault Diagnosis
    Wang, Bo
    Zhang, Meng
    Xu, Hao
    Wang, Chao
    Yang, Wenglong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [34] A Dense ResNet Model with RGB Input Mapping for Cross-Domain Mechanical Fault Diagnosis
    Xu, Xiaozhuo
    Li, Chao
    Zhang, Xinliang
    Zhao, Yunji
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2023, 26 (02) : 40 - 47
  • [35] Cross-domain fault diagnosis method for rolling bearings based on contrastive universal domain adaptation
    Kang, Shouqiang
    Tang, Xi
    Wang, Yujing
    Wang, Qingyan
    Xie, Jinbao
    ISA TRANSACTIONS, 2024, 146 : 195 - 207
  • [36] Open-set federated adversarial domain adaptation based cross-domain fault diagnosis
    Xu, Shu
    Ma, Jian
    Song, Dengwei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [37] Universal source-free domain adaptation method for cross-domain fault diagnosis of machines
    Zhang, Yongchao
    Ren, Zhaohui
    Feng, Ke
    Yu, Kun
    Beer, Michael
    Liu, Zheng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 191
  • [38] Cross-Domain Open Set Fault Diagnosis Based on Weighted Domain Adaptation with Double Classifiers
    Wang, Huaqing
    Xu, Zhitao
    Tong, Xingwei
    Song, Liuyang
    SENSORS, 2023, 23 (04)
  • [39] Cross-Domain Automatic Modulation Classification: A Multimodal-Information-Based Progressive Unsupervised Domain Adaptation Network
    Deng, Wen
    Li, Si
    Wang, Xiang
    Huang, Zhitao
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 5544 - 5558
  • [40] Domain Adversarial Transfer Network for Cross-Domain Fault Diagnosis of Rotary Machinery
    Chen, Zhuyun
    He, Guolin
    Li, Jipu
    Liao, Yixiao
    Gryllias, Konstantinos
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (11) : 8702 - 8712