Multi-modal analysis of oxidation on Fe-Cr-Ni austenitic stainless steel 304 exposed to beyond-design basis temperatures

被引:4
作者
Copeland-Johnson, Trishelle M. [1 ,6 ]
Nyamekye, Charles K. A. [3 ,4 ]
Ecker, Lynne [2 ]
Bowler, Nicola [1 ]
Smith, Emily A. [3 ,4 ]
Rebak, Raul B. [5 ]
Gill, Simerjeet K. [4 ]
机构
[1] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA USA
[2] Brookhaven Natl Lab, Nucl Sci & Technol Dept, Upton, NY USA
[3] Iowa State Univ, Dept Chem, Ames, IA USA
[4] US DOE, Ames Lab, Ames, IA 50011 USA
[5] Gen Elect Res, Schenectady, NY USA
[6] US DOE, Glenn T Seaborg Inst, Idaho Natl Lab, Idaho Falls, ID USA
关键词
Stainless steel; Raman spectroscopy; SEM; XRD; Atmospheric corrosion; Oxidation; X-RAY; BEHAVIOR; ALLOYS; MICROSTRUCTURE; DIFFRACTION; ATMOSPHERES; SELECTION; UPHILL; OXIDES; STEAM;
D O I
10.1016/j.corsci.2023.111167
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Stainless Steel 304 is being investigated for accident tolerant claddings. In this investigation, we use multi-modal characterization to evaluate oxidation under laboratory air versus 100% steam at 1200 degrees C for 2 h. Air oxidation features Fe(NiMn)O4, Fe3O4, Fe(3,0CrxO4, and Cr2O3. Steam oxidation produces a dual layer, containing Fe2O3- enriched porous outer layer and sub-surface matrix of Fe3O4/Fe(3,0CrxO4 with SiO2/Fe(3_ x)SixO4. From these findings, we postulate the oxidation mechanism. Arrangement of oxidation products in air corroborates with anticipated diffusion behavior, except Cr2O3. However, arrangement in steam deviates due to presumably intergranular interactions with H2O, resulting in the sub-surface matrix.
引用
收藏
页数:13
相关论文
共 45 条
[1]   Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics [J].
Aadhavan, R. ;
Babu, K. Suresh .
APPLIED SURFACE SCIENCE, 2017, 411 :219-226
[2]  
[Anonymous], 2012, Fukushima Daiichi: ANS Committee Report
[3]  
ASTM International SAE International, 2008, MET ALL UN NUMB SYST
[4]   Selection of fuel cladding material for nuclear fission reactors [J].
Azevedo, C. R. F. .
ENGINEERING FAILURE ANALYSIS, 2011, 18 (08) :1943-1962
[5]  
Birks N, 2006, INTRODUCTION TO THE HIGH-TEMPERATURE OXIDATION OF METALS, 2ND EDITION, P1, DOI 10.1017/CBO9781139163903
[6]   OXIDATION OF 304L STAINLESS STEEL BY STEAM AND BY AIR [J].
BITTEL, JT ;
SJODAHL, LH ;
WHITE, JF .
CORROSION, 1969, 25 (01) :7-&
[7]  
Brassfield H., 1968, Recommended Property and Reaction Kinetics Data for Use in Evaluating a Light-Water-Cooled Reactor Loss-of-Coolant Incident
[8]   SYNCHROTRON X-RAY AND NEUTRON-DIFFRACTION STUDIES IN SOLID-STATE CHEMISTRY [J].
CHEETHAM, AK ;
WILKINSON, AP .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1992, 31 (12) :1557-1570
[9]   Analysis of inconel 600 oxidized under loss-of-coolant accident conditions: A multi-modal approach [J].
Copeland-Johnson, Trishelle M. ;
Nyamekye, Charles K. A. ;
Ecker, Lynne ;
Bowler, Nicola ;
Smith, Emily A. ;
Rebak, Raul B. ;
Gill, Simerjeet K. .
CORROSION SCIENCE, 2022, 195
[10]   Characterization of Kanthal APMT and T91 oxidation at beyond design-basis accident temperatures [J].
Copeland-Johnson, Trishelle M. ;
Nyamekye, Charles K. A. ;
Gill, Simerjeet K. ;
Ecker, Lynne ;
Bowler, Nicola ;
Smith, Emily A. ;
Rebak, Raul B. .
CORROSION SCIENCE, 2020, 171