A pH-universal ORR catalyst with atomic Fe-heteroatom (N, S) sites for high-performance Zn-air batteries

被引:0
|
作者
Li, Le [1 ,2 ]
Li, Na [1 ]
Xia, Jia-Wei [1 ]
Zhou, Shi-Long [1 ]
Qian, Xing-Yue [1 ]
Yin, Feng-Xiang [1 ]
Dai, Guo-Hong [1 ]
He, Guang-Yu [1 ]
Chen, Hai-Qun [1 ]
机构
[1] Changzhou Univ, Adv Catalysis & Green Mfg Collaborat Innovat Ctr, Sch Petrochem Engn, Key Lab Adv Catalyt Mat & Technol, Changzhou 213164, Peoples R China
[2] Jiangsu Urban & Rural Construction Vocat Coll, Changzhou 213147, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
heteroatom dopant; single-atom electrocatalyst; FeN3S sites; Zn-air battery; density functional theory (DFT) study; EFFICIENT OXYGEN REDUCTION; ELECTROCATALYSTS; ALKALINE; NITROGEN; ACHIEVE; CARBON;
D O I
10.1007/s12274-023-5625-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing innovative, easy-to-manufacture, and non-Pt-group-metal (non-PGM) electrocatalysts is essential for the highly efficient oxygen reduction reaction (ORR). Herein, we report a self-sacrificing post-synthetic strategy to synthesize highly loaded Fe-isolated single atoms anchored on the hierarchical porous N,S co-doped carbon matrix (Fe-SAs/S,N-C/rGO). The optimized Fe-SAs/S,N-C/rGO exhibits excellent ORR activity in the pH-universal range with half-wave potentials of 0.89, 0.80, and 0.60 V in alkaline, acidic, and neutral media, comparable to the commercial Pt/C (0.85, 0.81, and 0.64 V, respectively). The homemade liquid Zn-air battery (ZAB) with Fe-SAs/S,N-C/rGO as the cathode catalyst displays an open-circuit voltage (OCV) of similar to 1.61 V, discharging specific capacity of 817.23 mAh.g(-1), and long-term durability of similar to 1865 cycles, outperforming those of the device with commercial Pt/C+RuO2 (1.49 V, 657.32 mAh.g(-1), and similar to 120 cycles, respectively). Intriguingly, the corresponding flexible solidstate ZAB delivers satisfactory OCV, peak power density, foldability, and cycling stability at room temperature, as well as adaptability at a low temperature of -10 degrees C. Besides, density functional theory (DFT) calculation reveals that the atomic FeN3S moieties in Fe-SAs/S,N-C/rGO can cause charge redistribution and lower the binding strength of oxygen-containing intermediates, resulting in accelerated ORR kinetics and optimized catalytic activity. This work provides insights into experimental and theoretical guidance towards non-PGM electrocatalysts for efficient energy conversion.
引用
收藏
页码:9416 / 9425
页数:10
相关论文
共 50 条
  • [21] High-performance anodes for aqueous Zn-iodine batteries from spent Zn-air batteries
    Shan, Xiaofeng
    Fu, Yanqing
    Zhang, Dongdong
    Li, Pan
    Yang, Weiyou
    Wei, Qiliang
    MATERIALS ADVANCES, 2023, 4 (07): : 1623 - 1627
  • [22] Hierarchically porous Fe/N/S/C nanospheres with high-content of Fe-Nx for enhanced ORR and Zn-air battery performance
    Wu, Luming
    Zhao, Ruge
    Du, Guo
    Wang, Huan
    Hou, Machuan
    Zhang, Wei
    Sun, Pingchuan
    Chen, Tiehong
    GREEN ENERGY & ENVIRONMENT, 2023, 8 (06) : 1693 - 1702
  • [23] Preconstructing Asymmetric Interface in Air Cathodes for High-Performance Rechargeable Zn-Air Batteries
    Liu, Jia-Ning
    Zhao, Chang-Xin
    Ren, Ding
    Wang, Juan
    Zhang, Rui
    Wang, Shu-Hao
    Zhao, Chuan
    Li, Bo-Quan
    Zhang, Qiang
    ADVANCED MATERIALS, 2022, 34 (11)
  • [24] Hierarchically porous Fe/N/S/C nanospheres with high-content of Fe-Nx for enhanced ORR and Zn-air battery performance
    Luming Wu
    Ruge Zhao
    Guo Du
    Huan Wang
    Machuan Hou
    Wei Zhang
    Pingchuan Sun
    Tiehong Chen
    GreenEnergy&Environment, 2023, 8 (06) : 1693 - 1702
  • [25] Tellurium intervened Fe-N codoped carbon for improved oxygen reduction reaction and high-performance Zn-air batteries
    Wang, Rui
    Meng, Zihan
    Yan, Xuemin
    Tian, Tian
    Lei, Ming
    Pashameah, Rami Adel
    Abo-Dief, Hala M.
    Algadi, Hassan
    Huang, Nina
    Guo, Zhanhu
    Tang, Haolin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 137 : 215 - 222
  • [26] Cubic hollow porous carbon with defective-edge Fe-N 4 single-atom sites for high-performance Zn-air batteries
    Zhou, Shilong
    Chen, Chao
    Xia, Jiawei
    Li, Le
    Qian, Xingyue
    Yin, Fengxiang
    Dai, Guohong
    He, Guangyu
    Chen, Qun
    Chen, Haiqun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 181 : 82 - 90
  • [27] CoNi Nanoparticles Supported on N-Doped Bifunctional Hollow Carbon Composites as High-Performance ORR/OER Catalysts for Rechargeable Zn-Air Batteries
    Sheng, Kuang
    Yi, Qingfeng
    Chen, A-Ling
    Wang, Yuebing
    Yan, Yuhui
    Nie, Huidong
    Zhou, Xiulin
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (38) : 45394 - 45405
  • [28] 3D Hollow Hierarchical Porous Carbon with Fe-N4-OH Single-Atom Sites for High-Performance Zn-Air Batteries
    Zhou, Shilong
    Chen, Chao
    Xia, Jiawei
    Li, Le
    Qian, Xingyue
    Arif, Muhammad
    Yin, Fengxiang
    Dai, Guohong
    He, Guangyu
    Chen, Qun
    Chen, Haiqun
    SMALL, 2023, 19 (48)
  • [29] A gas diffusion strategy to engineer hierarchically porous Fe-N-C electrocatalysts for high-performance cathodes of Zn-air batteries
    Zhang, Yunxiao
    Xiao, Wenhua
    Zhang, Jingqiang
    Hu, Tiantian
    Hu, Shanxia
    Zhou, Minjie
    Hou, Zhaohui
    Liu, Yu
    He, Binhong
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (45) : 20762 - 20769
  • [30] Solvent-free synthesis of N-doped nanoporous carbon materials as durable high-performance pH-universal ORR catalysts
    Yu, Lejian
    Yang, Chuangchuang
    Zhang, Wendu
    Liu, Weiqi
    Wang, Huifen
    Qi, Jiawei
    Xu, Lang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 575 (575) : 406 - 415