A pH-universal ORR catalyst with atomic Fe-heteroatom (N, S) sites for high-performance Zn-air batteries

被引:0
|
作者
Li, Le [1 ,2 ]
Li, Na [1 ]
Xia, Jia-Wei [1 ]
Zhou, Shi-Long [1 ]
Qian, Xing-Yue [1 ]
Yin, Feng-Xiang [1 ]
Dai, Guo-Hong [1 ]
He, Guang-Yu [1 ]
Chen, Hai-Qun [1 ]
机构
[1] Changzhou Univ, Adv Catalysis & Green Mfg Collaborat Innovat Ctr, Sch Petrochem Engn, Key Lab Adv Catalyt Mat & Technol, Changzhou 213164, Peoples R China
[2] Jiangsu Urban & Rural Construction Vocat Coll, Changzhou 213147, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
heteroatom dopant; single-atom electrocatalyst; FeN3S sites; Zn-air battery; density functional theory (DFT) study; EFFICIENT OXYGEN REDUCTION; ELECTROCATALYSTS; ALKALINE; NITROGEN; ACHIEVE; CARBON;
D O I
10.1007/s12274-023-5625-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing innovative, easy-to-manufacture, and non-Pt-group-metal (non-PGM) electrocatalysts is essential for the highly efficient oxygen reduction reaction (ORR). Herein, we report a self-sacrificing post-synthetic strategy to synthesize highly loaded Fe-isolated single atoms anchored on the hierarchical porous N,S co-doped carbon matrix (Fe-SAs/S,N-C/rGO). The optimized Fe-SAs/S,N-C/rGO exhibits excellent ORR activity in the pH-universal range with half-wave potentials of 0.89, 0.80, and 0.60 V in alkaline, acidic, and neutral media, comparable to the commercial Pt/C (0.85, 0.81, and 0.64 V, respectively). The homemade liquid Zn-air battery (ZAB) with Fe-SAs/S,N-C/rGO as the cathode catalyst displays an open-circuit voltage (OCV) of similar to 1.61 V, discharging specific capacity of 817.23 mAh.g(-1), and long-term durability of similar to 1865 cycles, outperforming those of the device with commercial Pt/C+RuO2 (1.49 V, 657.32 mAh.g(-1), and similar to 120 cycles, respectively). Intriguingly, the corresponding flexible solidstate ZAB delivers satisfactory OCV, peak power density, foldability, and cycling stability at room temperature, as well as adaptability at a low temperature of -10 degrees C. Besides, density functional theory (DFT) calculation reveals that the atomic FeN3S moieties in Fe-SAs/S,N-C/rGO can cause charge redistribution and lower the binding strength of oxygen-containing intermediates, resulting in accelerated ORR kinetics and optimized catalytic activity. This work provides insights into experimental and theoretical guidance towards non-PGM electrocatalysts for efficient energy conversion.
引用
收藏
页码:9416 / 9425
页数:10
相关论文
共 50 条
  • [1] A pH-universal ORR catalyst with atomic Fe-heteroatom (N, S) sites for high-performance Zn-air batteries
    Le Li
    Na Li
    Jia-Wei Xia
    Shi-Long Zhou
    Xing-Yue Qian
    Feng-Xiang Yin
    Guo-Hong Dai
    Guang-Yu He
    Hai-Qun Chen
    Nano Research, 2023, 16 : 9416 - 9425
  • [2] A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn-air batteries
    Zhao, Meiqi
    Liu, Haoran
    Zhang, Hongwei
    Chen, Wen
    Sun, Hanqin
    Wang, Zhenhua
    Zhang, Biao
    Song, Lin
    Yang, Yong
    Ma, Chao
    Han, Yunhu
    Huang, Wei
    ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (12) : 6455 - 6463
  • [3] Vanadium Nitride Supported on N-Doped Carbon as High-Performance ORR Catalysts for Zn-Air Batteries
    Fu, Yidan
    Han, Lina
    Zheng, Pengfei
    Peng, Xianhui
    Xian, Xianglan
    Liu, Jinglin
    Zeng, Xiaoyuan
    Dong, Peng
    Xiao, Jie
    Zhang, Yingjie
    CATALYSTS, 2022, 12 (08)
  • [4] A pH-universal ORR catalyst with S heteroatom doping single-atom iron sites derived from a 2D flake-like MOF for superior flexible quasi-solid-state rechargeable Zn-air battery
    Li, Chen
    Zhang, Yaowen
    Yuan, Min
    Liu, Yang
    Lan, Haikuo
    Li, Zhenjiang
    Liu, Kang
    Wang, Lei
    CHEMICAL ENGINEERING JOURNAL, 2023, 471
  • [5] Three-Dimensional Fe Single-Atom Catalyst for High-Performance Cathode of Zn-Air Batteries
    Jiao, Yuying
    Gu, Xiaokang
    Zhai, Pengbo
    Wei, Yi
    Liu, Wei
    Chen, Qian
    Yang, Zhilin
    Zuo, Jinghan
    Wang, Lei
    Xu, Tengfei
    Gong, Yongji
    NANO LETTERS, 2022, 22 (18) : 7386 - 7393
  • [6] Atomically Dispersed Cu Nanostructures with pH-Universal Electrocatalytic Oxygen Reduction Activity for Zn-Air Batteries
    Zhang, Yaohui
    Dong, Yaqian
    Wu, Yuxiang
    Zhong, Xiaobin
    Song, Yuexian
    Wang, Kai
    Shi, Qing
    Ma, Tiehua
    Liu, Hantao
    Liang, Junfei
    Fei, Huilong
    ACS APPLIED NANO MATERIALS, 2023, 6 (19) : 18548 - 18557
  • [7] Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis
    Xu, Jie
    Lai, Shuhua
    Qi, Defeng
    Hu, Min
    Peng, Xianyun
    Liu, Yifan
    Liu, Wei
    Hu, Guangzhi
    Xu, Heng
    Li, Fan
    Li, Chao
    He, Jia
    Zhuo, Longchao
    Sun, Jiaqiang
    Qiu, Yuan
    Zhang, Shusheng
    Luo, Jun
    Liu, Xijun
    NANO RESEARCH, 2021, 14 (05) : 1374 - 1381
  • [8] Ultrahigh-Loaded Fe Single Atoms and Fe3C Nanoparticle Catalysts as Air Cathodes for High-Performance Zn-Air Batteries
    Yang, Qi
    Liu, Rumeng
    Pan, Yanan
    Cao, Zheng
    Zuo, Jiabao
    Qiu, Fan
    Yu, Jian
    Song, Haiou
    Ye, Zhiwen
    Zhang, Shupeng
    CRYSTAL GROWTH & DESIGN, 2023, 23 (02) : 5720 - 5731
  • [9] Facile preparation of high-performance MnO2/KB air cathode for Zn-air batteries
    Wu, M. C.
    Zhao, T. S.
    Jiang, H. R.
    Wei, L.
    Zhang, Z. H.
    ELECTROCHIMICA ACTA, 2016, 222 : 1438 - 1444
  • [10] Tellurium intervened Fe-N codoped carbon for improved oxygen reduction reaction and high-performance Zn-air batteries
    Wang, Rui
    Meng, Zihan
    Yan, Xuemin
    Tian, Tian
    Lei, Ming
    Pashameah, Rami Adel
    Abo-Dief, Hala M.
    Algadi, Hassan
    Huang, Nina
    Guo, Zhanhu
    Tang, Haolin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 137 : 215 - 222