A Multifunctional Electrolyte Additive With Solvation Structure Regulation and Electrode/Electrolyte Interface Manipulation Enabling High-Performance Li-Ion Batteries in Wide Temperature Range

被引:77
作者
Lan, Xiwei [1 ]
Yang, Shanshan [1 ]
Meng, Tao [1 ]
Zhang, Chaosheng [1 ]
Hu, Xianluo [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
electrolyte additives; interface manipulation; lithium-ion batteries; solvation structure; wide temperature range; LITHIUM; PROGRESS; CATHODE;
D O I
10.1002/aenm.202203449
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Improving the tolerance of Li-ion batteries (LIBs) to extreme temperatures and climates worldwide is vital to their global uptake. However, LIBs call for more strict requirements for the key components when operated in a wide temperature range, especially synchronously desirable interfacial kinetics and thermal stability. Here, a novel multifunctional electrolyte additive, N-tert-butyl-2-thiophenesulfonamide (NTSA), to fabricate stable LIBs under wide-temperature conditions, is reported. The Li-ion solvation structure in the electrolyte is regulated and involves less coordinated solvents (particularly fluoroethylene carbonate), leading to superior Li+ transportation. The effective NTSA additive is preferentially decomposed to form a uniform electrode/electrolyte interface with abundant multiphase inorganic Li-F, Li3N, and Li-S species simultaneously on the cathode and anode surface. The resulting inorganic-rich interface can not only boost the interfacial Li-ion transfer kinetics at low temperatures but also protect the active material and enhance the thermal stability of the interface and LIB devices at high temperatures. By adopting the NTSA-containing electrolyte, LiCoO2||omega-Li3V2O5 LIBs can be stably cycled in a wide temperature range between -30 degrees C and 80 degrees C, delivering a high capacity of approximate to 100.1 mAh g(-1) (0.2 A g(-1)) at -20 degrees C and high capacity retention of 94.5% after 200 cycles (0.5 A g(-1)) at 55 degrees C.
引用
收藏
页数:11
相关论文
共 47 条
[11]   Challenges and advances in wide-temperature rechargeable lithium batteries [J].
Feng, Yang ;
Zhou, Limin ;
Ma, Hua ;
Wu, Zhonghan ;
Zhao, Qing ;
Li, Haixia ;
Zhang, Kai ;
Chen, Jun .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (05) :1711-+
[12]   Rechargeable Batteries of the Future-The State of the Art from a BATTERY 2030+Perspective [J].
Fichtner, Maximilian ;
Edstrom, Kristina ;
Ayerbe, Elixabete ;
Berecibar, Maitane ;
Bhowmik, Arghya ;
Castelli, Ivano E. ;
Clark, Simon ;
Dominko, Robert ;
Erakca, Merve ;
Franco, Alejandro A. ;
Grimaud, Alexis ;
Horstmann, Birger ;
Latz, Arnulf ;
Lorrmann, Henning ;
Meeus, Marcel ;
Narayan, Rekha ;
Pammer, Frank ;
Ruhland, Janna ;
Stein, Helge ;
Vegge, Tejs ;
Weil, Marcel .
ADVANCED ENERGY MATERIALS, 2022, 12 (17)
[13]   Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries [J].
Fu, Jiale ;
Ji, Xiao ;
Chen, Ji ;
Chen, Long ;
Fan, Xiulin ;
Mu, Daobin ;
Wang, Chunsheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (49) :22194-22201
[14]   Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface [J].
Gao, Yue ;
Rojas, Tomas ;
Wang, Ke ;
Liu, Shuai ;
Wang, Daiwei ;
Chen, Tianhang ;
Wang, Haiying ;
Ngo, Anh T. ;
Wang, Donghai .
NATURE ENERGY, 2020, 5 (07) :534-542
[15]   Electrode-Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights [J].
Gauthier, Magali ;
Carney, Thomas J. ;
Grimaud, Alexis ;
Giordano, Livia ;
Pour, Nir ;
Chang, Hao-Hsun ;
Fenning, David P. ;
Lux, Simon F. ;
Paschos, Odysseas ;
Bauer, Christoph ;
Magia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Shao-Horn, Yang .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (22) :4653-4672
[16]   In Situ Surface Self-Reconstruction Strategies in Li-Rich Mn-Based Layered Cathodes for Energy-Dense Li-Ion Batteries [J].
Gou, Xiaoxia ;
Hao, Zhenkun ;
Hao, Zhimeng ;
Yang, Gaojing ;
Yang, Zhuo ;
Zhang, Xinyue ;
Yan, Zhenhua ;
Zhao, Qing ;
Chen, Jun .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (18)
[17]   Designing Advanced Lithium-Based Batteries for Low-Temperature Conditions [J].
Gupta, Abhay ;
Manthiram, Arumugam .
ADVANCED ENERGY MATERIALS, 2020, 10 (38)
[18]   Fundamentals and Challenges of Lithium Ion Batteries at Temperatures between-40 and 60 °C [J].
Hou, Junbo ;
Yang, Min ;
Wang, Deyu ;
Zhang, Junliang .
ADVANCED ENERGY MATERIALS, 2020, 10 (18)
[19]   Optimizing Electrode/Electrolyte Interphases and Li-Ion Flux/Solvation for Lithium-Metal Batteries with Qua-Functional Heptafluorobutyric Anhydride [J].
Huang, Junda ;
Liu, Jiandong ;
He, Jian ;
Wu, Mingguang ;
Qi, Shihan ;
Wang, Huaping ;
Li, Fang ;
Ma, Jianmin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (38) :20717-20722
[20]   Tailoring the Spatial Distribution and Content of Inorganic Nitrides in Solid-Electrolyte Interphases for the Stable Li Anode in Li-S Batteries [J].
Jin, Qi ;
Zhao, KaiXin ;
Li, Lu ;
Ma, XinZhi ;
Wu, LiLi ;
Zhang, XiTian .
ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (04) :1180-1188