A Multifunctional Electrolyte Additive With Solvation Structure Regulation and Electrode/Electrolyte Interface Manipulation Enabling High-Performance Li-Ion Batteries in Wide Temperature Range

被引:77
作者
Lan, Xiwei [1 ]
Yang, Shanshan [1 ]
Meng, Tao [1 ]
Zhang, Chaosheng [1 ]
Hu, Xianluo [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
electrolyte additives; interface manipulation; lithium-ion batteries; solvation structure; wide temperature range; LITHIUM; PROGRESS; CATHODE;
D O I
10.1002/aenm.202203449
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Improving the tolerance of Li-ion batteries (LIBs) to extreme temperatures and climates worldwide is vital to their global uptake. However, LIBs call for more strict requirements for the key components when operated in a wide temperature range, especially synchronously desirable interfacial kinetics and thermal stability. Here, a novel multifunctional electrolyte additive, N-tert-butyl-2-thiophenesulfonamide (NTSA), to fabricate stable LIBs under wide-temperature conditions, is reported. The Li-ion solvation structure in the electrolyte is regulated and involves less coordinated solvents (particularly fluoroethylene carbonate), leading to superior Li+ transportation. The effective NTSA additive is preferentially decomposed to form a uniform electrode/electrolyte interface with abundant multiphase inorganic Li-F, Li3N, and Li-S species simultaneously on the cathode and anode surface. The resulting inorganic-rich interface can not only boost the interfacial Li-ion transfer kinetics at low temperatures but also protect the active material and enhance the thermal stability of the interface and LIB devices at high temperatures. By adopting the NTSA-containing electrolyte, LiCoO2||omega-Li3V2O5 LIBs can be stably cycled in a wide temperature range between -30 degrees C and 80 degrees C, delivering a high capacity of approximate to 100.1 mAh g(-1) (0.2 A g(-1)) at -20 degrees C and high capacity retention of 94.5% after 200 cycles (0.5 A g(-1)) at 55 degrees C.
引用
收藏
页数:11
相关论文
共 47 条
[1]   Formation of LiF-rich Cathode-Electrolyte Interphase by Electrolyte Reduction [J].
Bai, Panxing ;
Ji, Xiao ;
Zhang, Jiaxun ;
Zhang, Weiran ;
Hou, Singyuk ;
Su, Hai ;
Li, Mengjie ;
Deng, Tao ;
Cao, Longsheng ;
Liu, Sufu ;
He, Xinzi ;
Xu, Yunhua ;
Wang, Chunsheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (26)
[2]   Thermal Characterization of LiFePO4 Cathode in Lithium Ion Cells [J].
Ben Mayza, A. ;
Ramanathan, M. ;
Radhakrishnan, R. ;
Ha, S. ;
Ramani, V. ;
Prakash, J. ;
Zaghib, K. .
NANOSTRUCTURED MATERIALS FOR ENERGY STORAGE AND CONVERSION, 2011, 35 (34) :177-183
[3]   Electrolyte Design Enabling a High-Safety and High-Performance Si Anode with a Tailored Electrode-Electrolyte Interphase [J].
Cao, Zhang ;
Zheng, Xueying ;
Qu, Qunting ;
Huang, Yunhui ;
Zheng, Honghe .
ADVANCED MATERIALS, 2021, 33 (38)
[4]   Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures [J].
Chen, Xilin ;
Xu, Wu ;
Engelhard, Mark H. ;
Zheng, Jianming ;
Zhang, Yaohui ;
Ding, Fei ;
Qian, Jiangfeng ;
Zhang, Ji-Guang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (07) :2346-2352
[5]   Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes [J].
Cheng, Xin-Bing ;
Yan, Chong ;
Peng, Hong-Jie ;
Huang, Jia-Qi ;
Yang, Shu-Ting ;
Zhang, Qiang .
ENERGY STORAGE MATERIALS, 2018, 10 :199-205
[6]   Stabilization of high-voltage lithium metal batteries using a sulfone-based electrolyte with bi-electrode affinity and LiSO2F-rich interphases [J].
Dong, Liwei ;
Liu, Yuanpeng ;
Chen, Dongjiang ;
Han, Yupei ;
Ji, Yuanpeng ;
Liu, Jipeng ;
Yuan, Botao ;
Dong, Yunfa ;
Li, Qun ;
Zhou, Shengyu ;
Zhong, Shijie ;
Liang, Yifang ;
Yang, Mengqiu ;
Yang, Chunhui ;
He, Weidong .
ENERGY STORAGE MATERIALS, 2022, 44 :527-536
[7]   Promoting Rechargeable Batteries Operated at Low Temperature [J].
Dong, Xiaoli ;
Wang, Yong-Gang ;
Xia, Yongyao .
ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (20) :3883-3894
[8]   All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents [J].
Fan, Xiulin ;
Ji, Xiao ;
Chen, Long ;
Chen, Ji ;
Deng, Tao ;
Han, Fudong ;
Yue, Jie ;
Piao, Nan ;
Wang, Ruixing ;
Zhou, Xiuquan ;
Xiao, Xuezhang ;
Chen, Lixin ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (10) :882-890
[9]   Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery [J].
Fan, Xiulin ;
Ji, Xiao ;
Han, Fudong ;
Yue, Jie ;
Chen, Ji ;
Chen, Long ;
Deng, Tao ;
Jiang, Jianjun ;
Wang, Chunsheng .
SCIENCE ADVANCES, 2018, 4 (12)
[10]   Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J].
Feng, Xuning ;
Ouyang, Minggao ;
Liu, Xiang ;
Lu, Languang ;
Xia, Yong ;
He, Xiangming .
ENERGY STORAGE MATERIALS, 2018, 10 :246-267