We consider a spatial functional linear regression, where a scalar response is related to a square-integrable spatial functional process. We use a smoothing spline estimator for the functional slope parameter and establish a finite sample bound for variance of this estimator. Then we give the optimal bound of the prediction error under mixing spatial dependence. Finally, we illustrate our results by simulations and by an application to ozone pollution forecasting at nonvisited sites.
机构:
Univ Paris Descartes & Sorbonne Paris Cite, CNRS, UMR 8145, Lab MAP5, F-75270 Paris 06, FranceUniv Paris Descartes & Sorbonne Paris Cite, CNRS, UMR 8145, Lab MAP5, F-75270 Paris 06, France
Comte, Fabienne
Johannes, Jan
论文数: 0引用数: 0
h-index: 0
机构:
Catholic Univ Louvain, Inst Stat Biostat & Sci Actuarielles, B-1348 Louvain, BelgiumUniv Paris Descartes & Sorbonne Paris Cite, CNRS, UMR 8145, Lab MAP5, F-75270 Paris 06, France
机构:
Univ Paris Descartes & Sorbonne Paris Cite, CNRS, UMR 8145, Lab MAP5, F-75270 Paris 06, FranceUniv Paris Descartes & Sorbonne Paris Cite, CNRS, UMR 8145, Lab MAP5, F-75270 Paris 06, France
Comte, Fabienne
Johannes, Jan
论文数: 0引用数: 0
h-index: 0
机构:
Catholic Univ Louvain, Inst Stat Biostat & Sci Actuarielles, B-1348 Louvain, BelgiumUniv Paris Descartes & Sorbonne Paris Cite, CNRS, UMR 8145, Lab MAP5, F-75270 Paris 06, France