Evaluating the Research Status of the Remote Sensing-Mediated Monitoring of Forest Biomass: A Bibliometric Analysis of WOS

被引:7
作者
Shi, Yonglei [1 ,2 ]
Wang, Zhihui [2 ]
Zhang, Guojun [3 ]
Wei, Xiaoyan [3 ]
Ma, Wentao [3 ]
Yu, Haoran [4 ]
机构
[1] Nanjing Forestry Univ, Coinnovat Ctr Sustainable Forestry Southern China, Nanjing 210037, Peoples R China
[2] Yellow River Inst Hydraul Res, Yellow River Conservancy Commiss, Key Lab Soil & Water Conservat Loess Plateau, Zhengzhou 450003, Peoples R China
[3] Ningxia Soil & Water Conservat Monitoring Stn, Yinchuan 750002, Ningxia, Peoples R China
[4] Nanjing Forestry Univ, Coll Landscape Architecture, Nanjing 210037, Peoples R China
来源
FORESTS | 2024年 / 15卷 / 03期
基金
中国国家自然科学基金;
关键词
bibliometric analysis; forests; biomass; remote sensing; Web of Science; ABOVEGROUND BIOMASS; CARBON POOLS; SENSED DATA; LIDAR DATA; SCIENCE; TRENDS; PATTERNS; CITATION; VOLUME;
D O I
10.3390/f15030524
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Forests serve as the largest carbon reservoir in terrestrial ecosystems, playing a crucial role in mitigating global warming and achieving the goal of "carbon neutrality". Forest biomass is intrinsically related to carbon sinks and sources in forest ecosystems, and thus, the accurate monitoring of forest biomass is of great significance in ensuring ecological security and maintaining the global carbon balance. Significantly, remote sensing is not only able to estimate forest biomass at a large spatial scale but does so quickly, accurately, and without loss. Moreover, it can obtain forest biomass in areas inaccessible to human beings, which have become the main data source for forest biomass estimation at present. For this reason, this study analyzes the current research status, research hotspots, and future research trends in the field of remote sensing monitoring of forest biomass based on 1678 forest biomass remote sensing monitoring results from 1985 to 2023 obtained from the Web of Science Core Collection database. The results showed that the following: (1) The number of publications showed an exponential upward trend from 1985 to 2023, with an average annual growth rate of 2.64%. The top ten journals contributed to 53.76% of the total number of publications and 52.89% of the total number of citations in the field. (2) In particular, Remote Sensing of Environment has maintained a leading position in the field for an extended period, boasting the highest impact factor. Additionally, the author Saatchi S. stands out with the highest total number of citations for articles. (3) Keyword clustering analysis revealed that the main research topics in the remote sensing monitoring of forest biomass can be categorized into the following: optical remote sensing, LiDAR remote sensing, SAR remote sensing, and carbon stock. The explosion of keywords in the last six years indicates that an increasing number of researchers are focusing on carbon, airborne LiDAR data, biomass mapping, and constructing optimal biomass models.
引用
收藏
页数:15
相关论文
共 71 条
[1]   bibliometrix: An R-tool for comprehensive science mapping analysis [J].
Aria, Massimo ;
Cuccurullo, Corrado .
JOURNAL OF INFORMETRICS, 2017, 11 (04) :959-975
[2]   Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region [J].
Astola, Heikki ;
Hame, Tuomas ;
Sirro, Laura ;
Molinier, Matthieu ;
Kilpi, Jorma .
REMOTE SENSING OF ENVIRONMENT, 2019, 223 :257-273
[3]   Non-destructive estimation of individual tree biomass: Allometric models, terrestrial and UAV laser scanning [J].
Brede, Benjamin ;
Terryn, Louise ;
Barbier, Nicolas ;
Bartholomeus, Harm M. ;
Bartolo, Renee ;
Calders, Kim ;
Derroire, Geraldine ;
Moorthy, Sruthi M. Krishna ;
Lau, Alvaro ;
Levick, Shaun R. ;
Raumonen, Pasi ;
Verbeeck, Hans ;
Wang, Di ;
Whiteside, Tim ;
van der Zee, Jens ;
Herold, Martin .
REMOTE SENSING OF ENVIRONMENT, 2022, 280
[4]   Estimating Aboveground Carbon Dynamic of China Using Optical and Microwave Remote-Sensing Datasets from 2013 to 2019 [J].
Chang, Zhongbing ;
Fan, Lei ;
Wigneron, Jean-Pierre ;
Wang, Ying-Ping ;
Ciais, Philippe ;
Chave, Jerome ;
Fensholt, Rasmus ;
Chen, Jing M. ;
Yuan, Wenping ;
Ju, Weimin ;
Li, Xin ;
Jiang, Fei ;
Wu, Mousong ;
Chen, Xiuzhi ;
Qin, Yuanwei ;
Frappart, Frederic ;
Li, Xiaojun ;
Wang, Mengjia ;
Liu, Xiangzhuo ;
Tang, Xuli ;
Hobeichi, Sanaa ;
Yu, Mengxiao ;
Ma, Mingguo ;
Wen, Jianguang ;
Xiao, Qing ;
Shi, Weiyu ;
Liu, Dexin ;
Yan, Junhua .
JOURNAL OF REMOTE SENSING, 2023, 3
[5]   CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature [J].
Chen, CM .
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2006, 57 (03) :359-377
[6]   Maps with 1 km resolution reveal increases in above- and belowground forest biomass carbon pools in China over the past 20 years [J].
Chen, Yongzhe ;
Feng, Xiaoming ;
Fu, Bojie ;
Ma, Haozhi ;
Zohner, Constantin M. ;
Crowther, Thomas W. ;
Huang, Yuanyuan ;
Wu, Xutong ;
Wei, Fangli .
EARTH SYSTEM SCIENCE DATA, 2023, 15 (02) :897-910
[7]   A review of target decomposition theorems in radar polarimetry [J].
Cloude, SR ;
Pottier, E .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1996, 34 (02) :498-518
[8]   Floating treatment wetlands: A review and bibliometric analysis [J].
Colares, Gustavo S. ;
Dell'Osbel, Naira ;
Wiesel, Patrik G. ;
Oliveira, Gislayne A. ;
Lemos, Pedro Henrique Z. ;
da Silva, Fagner P. ;
Lutterbeck, Carlos A. ;
Kist, Lourdes T. ;
Machado, Enio L. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 714
[9]   Combining simulated hyperspectral EnMAP and Landsat time series for forest aboveground biomass mapping [J].
Cooper, Sam ;
Okujeni, Akpona ;
Pflugmacher, Dirk ;
van der Linden, Sebastian ;
Hostert, Patrick .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 98
[10]   Bibliometric Analysis using Bibliometrix an R Package [J].
Dervis, Hamid .
JOURNAL OF SCIENTOMETRIC RESEARCH, 2019, 8 (03) :156-160