Considering the selectivity of pore size gradient size exclusion chromatography columns

被引:6
作者
Fekete, Szabolcs [1 ]
Lauber, Matthew [2 ]
Xu, Mingcheng [2 ]
机构
[1] Waters Corp, CMU Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
[2] Waters Corp, Milford, MA USA
关键词
Pore size distribution; Stationary phase gradient; Porosity gradient; Size exclusion chromatography; Selectivity; LIQUID-CHROMATOGRAPHY; MONOLITHIC COLUMNS; GEL CHROMATOGRAPHY; STATIONARY PHASES; RESOLUTION; PROTEINS; LC;
D O I
10.1016/j.chroma.2024.464726
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
One of the most significant performance determining variables of a size exclusion column is the pore size of its packing material. This is most definitely the case for assigning the suitability of a given column for differently sized analytes. As technologies for particle and column manufacturing continue to advance, it is worth contemplating the value of more finely controlled manipulation of this parameter. The change in a packing material's pores across the length of a size exclusion column was thus explored. A change in average pore diameter and pore size distribution was studied by means of theoretical modeling. These parameters were investigated for independent and combinatorial effects. From our predictions, versus tandem column chromatography, a gradient column apparatus does not yield sizable increases in monomer to dimer selectivity of any given critical pair. Instead, our modeling suggests it can yield more universally effective separations of multiple pairs of species at once, as is sometimes necessary when analyzing the high molecular weight components of highly aggregated drug substances.
引用
收藏
页数:11
相关论文
共 35 条
[1]   A non-destructive test to assess the axial heterogeneity of in situ modified monoliths for HPLC [J].
Bassanese, Danielle N. ;
Soliven, Arianne ;
Conlan, Xavier A. ;
Shalliker, R. Andrew ;
Barnett, Neil W. ;
Stevenson, Paul G. .
ANALYTICAL METHODS, 2015, 7 (17) :7177-7185
[2]   Destructive stationary phase gradients for reversed-phase/hydrophilic interaction liquid chromatography [J].
Cain, Caitlin N. ;
Forzano, Anna, V ;
Rutan, Sarah C. ;
Collinson, Maryanne M. .
JOURNAL OF CHROMATOGRAPHY A, 2018, 1570 :82-90
[3]   Gradient stationary phase optimized selectivity liquid chromatography with conventional columns [J].
Chen, Kai ;
Lynen, Frederic ;
Szucs, Roman ;
Hanna-Brown, Melissa ;
Sandra, Pat .
ANALYST, 2013, 138 (10) :2914-2923
[4]   Impact of particle size gradients on the apparent efficiency of chromatographic columns [J].
Codesido, Santiago ;
Rudaz, Serge ;
Veuthey, Jean-Luc ;
Guillarme, Davy ;
Desmet, Gert ;
Fekete, Szabolcs .
JOURNAL OF CHROMATOGRAPHY A, 2019, 1603 :208-215
[5]   Fabrication and characterisation of capillary polymeric monoliths incorporating continuous stationary phase gradients [J].
Currivan, Sinead ;
Connolly, Damian ;
Gillespie, Eoin ;
Paull, Brett .
JOURNAL OF SEPARATION SCIENCE, 2010, 33 (4-5) :484-492
[6]   Multiple Step Gradient Analysis in Stationary Phase Optimised Selectivity LC for the Analysis of Complex Mixtures [J].
De Beer, Maarten ;
Lynen, Frederic ;
Hanna-Brown, Melissa ;
Sandra, Pat .
CHROMATOGRAPHIA, 2009, 69 (7-8) :609-614
[7]   Amine Gradient Stationary Phases on In-House Built Monolithic Columns for Liquid Chromatography [J].
Dewoolkar, Veeren C. ;
Jeong, Lena N. ;
Cook, Daniel W. ;
Ashraf, Kayesh M. ;
Rutan, Sarah C. ;
Collinson, Maryanne M. .
ANALYTICAL CHEMISTRY, 2016, 88 (11) :5941-5949
[8]   Amine-phenyl multi-component gradient stationary phases [J].
Dewoolkar, Veeren C. ;
Kannan, Balamurali ;
Ashraf, Kayesh M. ;
Higgins, Daniel A. ;
Collinson, Maryanne M. .
JOURNAL OF CHROMATOGRAPHY A, 2015, 1410 :190-199
[9]   OPTIMIZATION OF EFFICIENCY IN SIZE-EXCLUSION CHROMATOGRAPHY [J].
ENGELHARDT, H ;
AHR, G .
JOURNAL OF CHROMATOGRAPHY, 1983, 282 (DEC) :385-397
[10]   Theoretical study on solute migration and band broadening occurring in pressure-enhanced liquid chromatography [J].
Fekete, Szabolcs ;
Lauber, Matthew A. .
JOURNAL OF CHROMATOGRAPHY A, 2023, 1692