共 50 条
Performance enhancement of aluminium-gated poly(3-hexylthiophene) transistors with polymer electrolyte/PMMA bilayer gate dielectrics
被引:4
作者:
Nketia-Yawson, Vivian
[1
,2
]
Nketia-Yawson, Benjamin
[1
,2
]
Jo, Jea Woong
[1
,2
]
机构:
[1] Dongguk Univ, Dept Energy & Mat Engn, 30 Pildong Ro,1 Gil, Seoul 04620, South Korea
[2] Dongguk Univ, Res Ctr Photoenergy Harvesting & Convers Technol p, 30 Pildong Ro,1 Gil, Seoul 04620, South Korea
来源:
基金:
新加坡国家研究基金会;
关键词:
Organic field-effect transistors;
Bilayer dielectrics;
Gate electrode;
PMMA;
Polymer electrolyte;
FIELD-EFFECT TRANSISTORS;
CONTACT RESISTANCE;
CHARGE-TRANSPORT;
FILM;
VOLTAGE;
MOBILITY;
D O I:
10.1016/j.polymer.2023.126660
中图分类号:
O63 [高分子化学(高聚物)];
学科分类号:
070305 ;
080501 ;
081704 ;
摘要:
Tremendous progress in device performance has been realized in electrolyte-gated field-effect transistors (FETs). However, due to the formation of oxides at the metal/electrolyte interface, electrochemically stable and corrosion-resistant noble metals (e.g., gold, platinum, or palladium) have been utilized, which makes device fabrication expensive. In this study, we report an enhanced performance in aluminium (Al)-gated poly(3hexylthiophene) (P3HT) transistors with polymer electrolyte/poly(methyl methacrylate) (PMMA) bilayer gate dielectrics. This cost-effective Al-gated transistor devices with polymer electrolyte/PMMA bilayer dielectrics measured improved operational stability and hole mobility of -0.06 cm2 V-1 s-1 at low operating voltage of -15 V compared to the control Al-gated FETs with PMMA dielectric (-0.03 cm2 V-1 s-1) and Al-gated devices with electrolyte dielectric (-10-4 cm2 V-1 s- 1). The exceptional performance in the FETs with bilayer gate dielectric would be attributed to an improved charge transport and a robust vacuum metalized Al/PMMA interface in contrast to the electrolyte-gated FETs, which was severely influenced by the formation of aluminium oxide layer (Al2O3) at the Al/dielectric interface. This study provides a practical approach for fabricating lowcost, low-voltage, and high-performance FET devices with hybrid polymer electrolyte/PMMA bilayer dielectrics.
引用
收藏
页数:6
相关论文
共 50 条