Existence and Multiplicity of Solutions for Fractional κ(ξ)-Kirchhoff-Type Equation

被引:0
|
作者
Sousa, J. Vanterler da C. [1 ]
Kucche, Kishor D. [2 ]
Nieto, Juan J. [3 ]
机构
[1] DEMATI UEMA, Dept Math, Aerosp Engn, PPGEA UEMA, BR-65054 Sao Luis, MA, Brazil
[2] Shivaji Univ, Dept Math, Kolhapur 416004, Maharashtra, India
[3] Univ Santiago De Compostela, Dept Estat Analise Matemat & Optimizac, CITMAga, Santiago De Compostela 15782, Spain
关键词
Variational method; Fractional p(x)-Kirchhoff-type; Nonlocal problems; P-KIRCHHOFF-TYPE; DIFFERENTIAL-EQUATIONS; POSITIVE SOLUTIONS; ELLIPTIC EQUATION;
D O I
10.1007/s12346-023-00877-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we aim to tackle the questions of existence and multiplicity of solutions to a new class of kappa (xi )-Kirchhoff-type equation utilizing a variational approach. Further, we research the results from the theory of variable exponent Sobolev spaces and from the theory of space psi-fractional H-kappa(xi)(mu,nu; psi) (Lambda). In this sense, we present a few special cases and remark on the outcomes explored.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Existence and multiplicity of solutions for a class of fractional Kirchhoff-type problem
    Sun, Gaofeng
    Teng, Kaimin
    MATHEMATICAL COMMUNICATIONS, 2014, 19 (01) : 183 - 194
  • [2] Multiplicity of solutions for fractional p(z)-Kirchhoff-type equation
    Bouali, Tahar
    Guefaifia, Rafik
    Boulaaras, Salah
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [3] Existence and multiplicity of solutions for fractional p(x)-Kirchhoff-type problems
    Hao, Zhiwei
    Zheng, Huiqin
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (06): : 3309 - 3321
  • [4] Existence and multiplicity of solutions for an indefinite Kirchhoff-type equation in bounded domains
    Sun, Juntao
    Wu, Tsung-fang
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (02) : 435 - 448
  • [5] Existence and multiplicity of solutions for fractional p(x, .)-Kirchhoff-type problems in RN
    Azroul, E.
    Benkirane, A.
    Shimi, M.
    APPLICABLE ANALYSIS, 2021, 100 (09) : 2029 - 2048
  • [6] Existence and multiplicity of solutions for p(.)-Kirchhoff-type equations
    AyazoClu, Rabil
    Akbulut, Sezgin
    Akkoyunlu, Ebubekir
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (04) : 1342 - 1359
  • [7] The existence of normalized solutions for a fractional Kirchhoff-type equation with doubly critical exponents
    Chen, Wenjing
    Huang, Xiaomeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):
  • [8] Existence and multiplicity of solutions for Kirchhoff-type equation with radial potentials in R3
    Li, Anran
    Su, Jiabao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (06): : 3147 - 3158
  • [9] The existence of normalized solutions for a fractional Kirchhoff-type equation with doubly critical exponents
    Wenjing Chen
    Xiaomeng Huang
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [10] On existence and multiplicity of solutions for Kirchhoff-type equations with a nonsmooth potential
    Yuan, Ziqing
    Huang, Lihong
    BOUNDARY VALUE PROBLEMS, 2015,