On the Monodromies and the Limit Mixed Hodge Structures of Families of Algebraic Varieties

被引:0
作者
Saito, Takahiro [1 ]
Takeuchi, Kiyoshi [2 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
[2] Tohoku Univ, Math Inst, Aramaki Aza Aoba 6-3,Aobaku Ku, Sendai 9808578, Japan
关键词
INFINITY; COHOMOLOGY; TOPOLOGY; NUMBERS;
D O I
10.1307/mmj/20205992
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the monodromies and the limit mixed Hodge structures of families of complete intersection varieties over a punctured disk in the complex plane. For this purpose, we express their motivic nearby fibers in terms of the geometric data of some Newton polyhedra. In particular, the limit mixed Hodge numbers and some part of the Jordan normal forms of the monodromies of such a family will be described very explicitly.
引用
收藏
页码:631 / 668
页数:38
相关论文
共 6 条
  • [1] Mixed Hodge structures on character varieties of nilpotent groups
    Florentino, Carlos
    Lawton, Sean
    Silva, Jaime
    REVISTA MATEMATICA COMPLUTENSE, 2025, 38 (01): : 121 - 148
  • [2] Mixed Hodge Structures on Alexander Modules
    Elduque, Eva
    Geske, Christian
    Cueto, Moises Herradoen
    Maxim, Laurentiu G.
    Wang, Botong
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 296 (1479) : 1 - 128
  • [3] Mixed Hodge structures and Siegel operators
    Ma, Shouhei
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (816): : 161 - 199
  • [4] Rational points over finite fields for regular models of algebraic varieties of Hodge type ≥ 1
    Berthelot, Pierre
    Esnault, Helene
    Ruelling, Kay
    ANNALS OF MATHEMATICS, 2012, 176 (01) : 413 - 508
  • [5] Alexander modules, Mellin transformation and variations of mixed Hodge structures
    Elduque, Eva
    Cueto, Moises Herradon
    Maxim, Laurentiu
    Wang, Botong
    ADVANCES IN MATHEMATICS, 2022, 411
  • [6] Rational Hodge isometries of hyper-Kahler varieties of K3[n] type are algebraic
    Markman, Eyal
    COMPOSITIO MATHEMATICA, 2024, 160 (06) : 1261 - 1303