STAR-Transformer: A Spatio-temporal Cross Attention Transformer for Human Action Recognition

被引:81
作者
Ahn, Dasom [1 ]
Kim, Sangwon [1 ]
Hong, Hyunsu [2 ]
Ko, Byoung Chul [1 ]
机构
[1] Keimyung Univ, Dept Comp Engn, Daegu, South Korea
[2] Difine, Seongnam, South Korea
来源
2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV) | 2023年
基金
新加坡国家研究基金会;
关键词
D O I
10.1109/WACV56688.2023.00333
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In action recognition, although the combination of spatio-temporal videos and skeleton features can improve the recognition performance, a separate model and balancing feature representation for cross-modal data are required. To solve these problems, we propose Spatio-TemporAl cRoss (STAR)-transformer, which can effectively represent two cross-modal features as a recognizable vector. First, from the input video and skeleton sequence, video frames are output as global grid tokens and skeletons are output as joint map tokens, respectively. These tokens are then aggregated into multi-class tokens and input into STAR-transformer. The STAR-transformer encoder consists of a full spatio-temporal attention (FAttn) module and a proposed zigzag spatio-temporal attention (ZAttn) module. Similarly, the continuous decoder consists of a FAttn module and a proposed binary spatio-temporal attention (BAttn) module. STAR-transformer learns an efficient multi-feature representation of the spatio-temporal features by properly arranging pairings of the FAttn, ZAttn, and BAttn modules. Experimental results on the Penn-Action, NTU-RGB+D 60, and 120 datasets show that the proposed method achieves a promising improvement in performance in comparison to previous state-of-the-art methods.
引用
收藏
页码:3319 / 3328
页数:10
相关论文
共 50 条
  • [41] Cmf-transformer: cross-modal fusion transformer for human action recognition
    Wang, Jun
    Xia, Limin
    Wen, Xin
    MACHINE VISION AND APPLICATIONS, 2024, 35 (05)
  • [42] SkateFormer: Skeletal-Temporal Transformer for Human Action Recognition
    Do, Jeonghyeok
    Kim, Munchurl
    COMPUTER VISION - ECCV 2024, PT XLI, 2025, 15099 : 401 - 420
  • [43] Transformer with Spatio-Temporal Representation for Video Anomaly Detection
    Sun, Xiaohu
    Chen, Jinyi
    Shen, Xulin
    Li, Hongjun
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2022, 2022, 13813 : 213 - 222
  • [44] Transformer RGBT Tracking With Spatio-Temporal Multimodal Tokens
    Sun, Dengdi
    Pan, Yajie
    Lu, Andong
    Li, Chenglong
    Luo, Bin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (11) : 12059 - 12072
  • [45] Spatio-Temporal Inference Transformer Network for Video Inpainting
    Tudavekar, Gajanan
    Saraf, Santosh S.
    Patil, Sanjay R.
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023, 23 (01)
  • [46] Shifted Chunk Transformer for Spatio-Temporal Representational Learning
    Zha, Xuefan
    Zhu, Wentao
    Lv, Tingxun
    Yang, Sen
    Liu, Ji
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [47] Human Action Recognition via Spatio-temporal Dual Network Flow and Visual Attention Fusion
    Liu Tianliang
    Qiao Qingwei
    Wan Junwei
    Dai Xiubin
    Luo Jiebo
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (10) : 2395 - 2401
  • [48] Spatio-Temporal Action Localization for Human Action Recognition in Large Dataset
    Megrhi, Sameh
    Jmal, Marwa
    Beghdadi, Azeddine
    Mseddi, Wided
    VIDEO SURVEILLANCE AND TRANSPORTATION IMAGING APPLICATIONS 2015, 2015, 9407
  • [49] Multimodal human action recognition based on spatio-temporal action representation recognition model
    Wu, Qianhan
    Huang, Qian
    Li, Xing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (11) : 16409 - 16430
  • [50] Human Action Recognition Based on a Spatio-Temporal Video Autoencoder
    Sousa e Santos, Anderson Carlos
    Pedrini, Helio
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (11)