STAR-Transformer: A Spatio-temporal Cross Attention Transformer for Human Action Recognition

被引:80
|
作者
Ahn, Dasom [1 ]
Kim, Sangwon [1 ]
Hong, Hyunsu [2 ]
Ko, Byoung Chul [1 ]
机构
[1] Keimyung Univ, Dept Comp Engn, Daegu, South Korea
[2] Difine, Seongnam, South Korea
来源
2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV) | 2023年
基金
新加坡国家研究基金会;
关键词
D O I
10.1109/WACV56688.2023.00333
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In action recognition, although the combination of spatio-temporal videos and skeleton features can improve the recognition performance, a separate model and balancing feature representation for cross-modal data are required. To solve these problems, we propose Spatio-TemporAl cRoss (STAR)-transformer, which can effectively represent two cross-modal features as a recognizable vector. First, from the input video and skeleton sequence, video frames are output as global grid tokens and skeletons are output as joint map tokens, respectively. These tokens are then aggregated into multi-class tokens and input into STAR-transformer. The STAR-transformer encoder consists of a full spatio-temporal attention (FAttn) module and a proposed zigzag spatio-temporal attention (ZAttn) module. Similarly, the continuous decoder consists of a FAttn module and a proposed binary spatio-temporal attention (BAttn) module. STAR-transformer learns an efficient multi-feature representation of the spatio-temporal features by properly arranging pairings of the FAttn, ZAttn, and BAttn modules. Experimental results on the Penn-Action, NTU-RGB+D 60, and 120 datasets show that the proposed method achieves a promising improvement in performance in comparison to previous state-of-the-art methods.
引用
收藏
页码:3319 / 3328
页数:10
相关论文
共 50 条
  • [1] STAR++: Rethinking spatio-temporal cross attention transformer for video action recognition
    Dasom Ahn
    Sangwon Kim
    Byoung Chul Ko
    Applied Intelligence, 2023, 53 : 28446 - 28459
  • [2] STAR plus plus : Rethinking spatio-temporal cross attention transformer for video action recognition
    Ahn, Dasom
    Kim, Sangwon
    Ko, Byoung Chul
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28446 - 28459
  • [3] Star-Transformer
    Guo, Qipeng
    Qiu, Xipeng
    Liu, Pengfei
    Shao, Yunfan
    Xue, Xiangyang
    Zhang, Zheng
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 1315 - 1325
  • [4] Fluxformer: Flow-Guided Duplex Attention Transformer via Spatio-Temporal Clustering for Action Recognition
    Hong, Younggi
    Kim, Min Ju
    Lee, Isack
    Yoo, Seok Bong
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (10) : 6411 - 6418
  • [5] Decoupled spatio-temporal grouping transformer for skeleton-based action recognition
    Sun, Shengkun
    Jia, Zihao
    Zhu, Yisheng
    Liu, Guangcan
    Yu, Zhengtao
    VISUAL COMPUTER, 2024, 40 (08): : 5733 - 5745
  • [6] Learning Action-guided Spatio-temporal Transformer for Group Activity Recognition
    Li, Wei
    Yang, Tianzhao
    Wu, Xiao
    Du, Xian-Jun
    Qiao, Jian-Jun
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 2051 - 2060
  • [7] An Efficient Spatio-Temporal Pyramid Transformer for Action Detection
    Weng, Yuetian
    Pan, Zizheng
    Han, Mingfei
    Chang, Xiaojun
    Zhuang, Bohan
    COMPUTER VISION, ECCV 2022, PT XXXIV, 2022, 13694 : 358 - 375
  • [8] Cross-attention Spatio-temporal Context Transformer for Semantic Segmentation of Historical Maps
    Wu, Sidi
    Chen, Yizi
    Schindler, Konrad
    Hurni, Lorenz
    31ST ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, ACM SIGSPATIAL GIS 2023, 2023, : 106 - 114
  • [9] Parallel Spatio-Temporal Attention Transformer for Video Frame Interpolation
    Ning, Xin
    Cai, Feifan
    Li, Yuhang
    Ding, Youdong
    ELECTRONICS, 2024, 13 (10)
  • [10] Spatio-Temporal Transformer with Clustering and Dilated Attention for Traffic Prediction
    Xu, Baowen
    Wang, Xuelei
    Liu, Chengbao
    Li, Shuo
    Li, Jingwei
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 1065 - 1071