Multislice input for 2D and 3D residual convolutional neural network noise reduction in CT

被引:7
|
作者
Zhou, Zhongxing [1 ]
Huber, Nathan R. [1 ]
Inoue, Akitoshi [1 ]
McCollough, Cynthia H. [1 ]
Yu, Lifeng [1 ]
机构
[1] Mayo Clin, Dept Radiol, Rochester, MN 55905 USA
关键词
deep convolutional neural network; noise reduction; multislice input; LOW-DOSE CT; IMAGE-RECONSTRUCTION; ABDOMINAL CT;
D O I
10.1117/1.JMI.10.1.014003
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Deep convolutional neural network (CNN)-based methods are increasingly used for reducing image noise in computed tomography (CT). Current attempts at CNN denoising are based on 2D or 3D CNN models with a single- or multiple-slice input. Our work aims to investigate if the multiple-slice input improves the denoising performance compared with the single-slice input and if a 3D network architecture is better than a 2D version at utilizing the multislice input.Approach: Two categories of network architectures can be used for the multislice input. First, multislice images can be stacked channel-wise as the multichannel input to a 2D CNN model. Second, multislice images can be employed as the 3D volumetric input to a 3D CNN model, in which the 3D convolution layers are adopted. We make performance comparisons among 2D CNN models with one, three, and seven input slices and two versions of 3D CNN models with seven input slices and one or three output slices. Evaluation was performed on liver CT images using three quantitative metrics with full-dose images as reference. Visual assessment was made by an experienced radiologist.Results: When the input channels of the 2D CNN model increases from one to three to seven, a trend of improved performance was observed. Comparing the three models with the seven-slice input, the 3D CNN model with a one-slice output outperforms the other models in terms of noise texture and homogeneity in liver parenchyma as well as subjective visualization of vessels.Conclusions: We conclude the that multislice input is an effective strategy for improving performance for 2D deep CNN denoising models. The pure 3D CNN model tends to have a better performance than the other models in terms of continuity across axial slices, but the difference was not significant compared with the 2D CNN model with the same number of slices as the input.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT
    Chang, P. D.
    Kuoy, E.
    Grinband, J.
    Weinberg, B. D.
    Thompson, M.
    Homo, R.
    Chen, J.
    Abcede, H.
    Shafie, M.
    Sugrue, L.
    Filippi, C. G.
    Su, M. -Y.
    Yu, W.
    Hess, C.
    Chow, D.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (09) : 1609 - 1616
  • [2] 3D Residual Convolutional Neural Network for Low Dose CT Denoising
    Zamyatin, Alex
    Yu, Leiming
    Rozas, David
    MEDICAL IMAGING 2022: PHYSICS OF MEDICAL IMAGING, 2022, 12031
  • [3] 2D and 3D Face Recognition Using Convolutional Neural Network
    Hu, Huiying
    Shah, Syed Afaq Ali
    Bennamoun, Mohammed
    Molton, Michael
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 133 - 138
  • [4] Synergistic 2D/3D Convolutional Neural Network for Hyperspectral Image Classification
    Yang, Xiaofei
    Zhang, Xiaofeng
    Ye, Yunming
    K Lau, Raymond Y.
    Lu, Shijian
    Li, Xutao
    Huang, Xiaohui
    REMOTE SENSING, 2020, 12 (12)
  • [5] An Ensemble of 2D Convolutional Neural Network for 3D Brain Tumor Segmentation
    Pawar, Kamlesh
    Chen, Zhaolin
    Shah, N. Jon
    Egan, Gary F.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I, 2020, 11992 : 359 - 367
  • [6] Automatic segmentation of lung tumors on CT images based on a 2D & 3D hybrid convolutional neural network
    Gan, Wutian
    Wang, Hao
    Gu, Hengle
    Duan, Yanhua
    Shao, Yan
    Chen, Hua
    Feng, Aihui
    Huang, Ying
    Fu, Xiaolong
    Ying, Yanchen
    Quan, Hong
    Xu, Zhiyong
    BRITISH JOURNAL OF RADIOLOGY, 2021, 94 (1126):
  • [7] Segmentation of Aorta 3D CT Images Based on 2D Convolutional Neural Networks
    Bonechi, Simone
    Andreini, Paolo
    Mecocci, Alessandro
    Giannelli, Nicola
    Scarselli, Franco
    Neri, Eugenio
    Bianchini, Monica
    Dimitri, Giovanna Maria
    ELECTRONICS, 2021, 10 (20)
  • [8] Unmasking Deepfakes - Harnessing the Potential of 2D and 3D Convolutional Neural Network Ensembles
    Bakliwal, Aagam
    Joshi, Amit D.
    Deo, Ninad
    Sawant, Suraj
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [9] 2D and 3D Convolutional Neural Network fusion for predicting the histological grade of hepatocellular carcinoma
    Dou, Tianyou
    Zhou, Wu
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3832 - 3837
  • [10] Predicting 3D particles shapes based on 2D images by using convolutional neural network
    Giannis, Kostas
    Thon, Christoph
    Yang, Guoqing
    Kwade, Arno
    Schilde, Carsten
    POWDER TECHNOLOGY, 2024, 432