Engineering the local structure of ZnGa2O4: Cr3+via Mg substitution to realize superior luminescence

被引:7
|
作者
Lu, Zuizhi [1 ]
Fan, Hua [1 ]
Ou, Yingjun [1 ]
Chen, Mianhong [1 ]
Yang, Ye [1 ]
Shen, Linawa [1 ]
Zhou, Liya [1 ]
He, Xiaotong [1 ]
Zhao, Jiansheng [1 ]
Chen, Peican [1 ]
机构
[1] Guangxi Univ, Sch Chem & Chem Engn, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
Cr 3+phosphors; Thermal stability; Quantum yield; NIR-LED; NEAR-INFRARED EMISSION; PERSISTENT LUMINESCENCE; PHOSPHOR; NIR; PHOTOLUMINESCENCE; EFFICIENT;
D O I
10.1016/j.ceramint.2022.11.176
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recently, near-infrared (NIR) light-emitting diodes (LED) have attracted much research attention globally. To advance this technology, NIR phosphors with high efficiency, thermal stability, and broad bands are required. In this work, we modified ZnGa2O4:Cr3+ phosphor with Mg2+ ions. Results show that this method improves the luminescence intensity of ZnGa2O4:Cr3+ phosphor, and the emission wavelength of the sample can be changed by doping different Mg2+ concentrations. This method also improved the thermal stability of the samples. The quantum yield of Mg-modified ZnGa2O4:Cr3+ phosphors reached 87.12%, and the white LED fabricated with Zn0.4Mg0.6Ga2O4:0.01Cr3+ phosphor and commercial Y3Al5O12:Ce3+ phosphor demonstrated good performance. The NIR-LED fabricated with Zn0.4Mg0.6Ga2O4:0.01Cr3+ phosphor achieved a photoelectric conversion efficiency of 7.17%. The lines on the surface of an orange taken by a NIR camera reveal that phosphor can be used in night vision lighting. Meanwhile, the distribution of blood vessels in the human palm highlights the promising bio-logical applications of the Zn0.4Mg0.6Ga2O4:0.01Cr3+ phosphor.
引用
收藏
页码:9985 / 9991
页数:7
相关论文
共 50 条
  • [1] Regulating Near-infrared Luminescence of ZnGa2O4:Cr3+ via F/O Anion Substitution
    Wu Y.
    Yu S.
    Huang Q.
    Shao Q.
    Faguang Xuebao/Chinese Journal of Luminescence, 2024, 45 (06): : 923 - 931
  • [2] Electrochemical luminescence of ZnGa2O4 and ZnGa2O4:Mn electrodes
    Ohtake, T
    Sonoyama, N
    Sakata, T
    CHEMICAL PHYSICS LETTERS, 1998, 298 (4-6) : 395 - 399
  • [3] Controlling disorder in the ZnGa2O4:Cr3+ persistent phosphor by Mg2+ substitution
    Basavaraju, Neelima
    Priolkar, Kaustubh R.
    Bessiere, Aurelie
    Sharma, Suchinder K.
    Gourier, Didier
    Binet, Laurent
    Viana, Bruno
    Emura, Shuichi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (02) : 1369 - 1377
  • [4] Near-infrared afterglow enhancement of ZnGa2O4:Cr3+via regulating trap distribution guided by the VRBE diagram
    Huang, Shuyu
    Han, Xinxin
    Zeng, Chuanyu
    Liang, Anxian
    Zou, Bingsuo
    DALTON TRANSACTIONS, 2024, 53 (25) : 10744 - 10752
  • [5] Cr:ZnGa2O4 nanoparticles with controllable size and persistent luminescence
    Mao, Yuanbing
    Srivastava, Bhupendra Bahadur
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [6] Deciphering the loss of persistent red luminescence in ZnGa2O4:Cr3+ upon Al3+ substitution
    Finley, Erin
    Brgoch, Jakoah
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (07) : 2005 - 2013
  • [7] Electrochemical luminescence of ZnGa2O4 semiconductor electrodes activated with Cr and Co
    Ohtake, T
    Sonoyama, N
    Sakata, T
    CHEMICAL PHYSICS LETTERS, 2000, 318 (06) : 517 - 521
  • [8] Persistent luminescence of ZnGa2O4: Cr, an outstanding biomarker for in vivo imaging
    Sharma, S. K.
    Bessiere, A.
    Gourier, D.
    Binet, L.
    Viana, B.
    Basavaraju, N.
    Priolkar, K. R.
    Maldiney, T.
    Scherman, D.
    Richard, C.
    OPTICAL COMPONENTS AND MATERIALS XI, 2014, 8982
  • [9] Persistent luminescence in ZnGa2O4:Cr3+ transparent glass-ceramics
    Castaing, V.
    Pellerin, M.
    Sontakke, A. D.
    Carrion, A. J. Fernandez
    Chaneac, C.
    Allix, M.
    Gourier, D.
    Viana, B.
    OXIDE-BASED MATERIALS AND DEVICES VIII, 2017, 10105
  • [10] Luminescence dependence on imposing ZnGa2O4 activated with Mn2+ or Cr3+ n-type bias for ZnGa2O4 and semiconductor electrodes
    Ohtake, T
    Sonoyama, N
    Sakata, T
    ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (12) : 1389 - 1392