A bioactive compliant vascular graft modulates macrophage polarization and maintains patency with robust vascular remodeling

被引:26
作者
Stahl, Alexander [1 ,2 ]
Hao, Dake [3 ,4 ]
Barrera, Janos [5 ]
Henn, Dominic [5 ]
Lin, Sien [1 ]
Moeinzadeh, Seyedsina [1 ]
Kim, Sungwoo [1 ]
Maloney, William [1 ]
Gurtner, Geoffrey [5 ]
Wang, Aijun [3 ,4 ,6 ]
Yang, Yunzhi Peter [1 ,7 ,8 ]
机构
[1] Stanford Univ, Dept Orthopaed Surg, 240 Pasteur Dr, Stanford, CA 94304 USA
[2] Stanford Univ, Dept Chem, 121 Mudd Bldg, Stanford, CA 94305 USA
[3] Univ Calif Davis, Sch Med, Dept Surg, Sacramento, CA 95817 USA
[4] Shriners Hosp Children, Inst Pediat Regenerat Med, Sacramento, CA 95817 USA
[5] Stanford Univ, Dept Surg, 300 Pasteur Dr, Stanford, CA 94305 USA
[6] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA
[7] Stanford Univ, Dept Mat Sci & Engn, 496 Lomita Mall, Stanford, CA 94305 USA
[8] Stanford Univ, Dept Bioengn, 443 Via Ortega, Stanford, CA USA
关键词
Vascular graft; Vascular compliance; Pore size; Macrophage polarization; Vascular remodeling; 3-D FIBROUS MATRIX; SYNTHETIC GRAFT; CELL MIGRATION; PORE-SIZE; TISSUE; PERFORMANCE; PHENOTYPE; ARTERIES; SCAFFOLD; GROWTH;
D O I
10.1016/j.bioactmat.2022.04.004
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Conventional synthetic vascular grafts are associated with significant failure rates due to their mismatched mechanical properties with the native vessel and poor regenerative potential. Though different tissue engineering approaches have been used to improve the biocompatibility of synthetic vascular grafts, it is still crucial to develop a new generation of synthetic grafts that can match the dynamics of native vessel and direct the host response to achieve robust vascular regeneration. The size of pores within implanted biomaterials has shown significant effects on macrophage polarization, which has been further confirmed as necessary for efficient vascular formation and remodeling. Here, we developed biodegradable, autoclavable synthetic vascular grafts from a new polyurethane elastomer and tailored the grafts' interconnected pore sizes to promote macrophage populations with a pro-regenerative phenotype and improve vascular regeneration and patency rate. The synthetic vascular grafts showed similar mechanical properties to native blood vessels, encouraged macrophage populations with varying M2 to M1 phenotypic expression, and maintained patency and vascular regeneration in a one-month rat carotid interposition model and in a four-month rat aortic interposition model. This innovative bioactive synthetic vascular graft holds promise to treat clinical vascular diseases.
引用
收藏
页码:167 / 178
页数:12
相关论文
共 54 条
[1]   Engineering an Endothelialized Vascular Graft: A Rational Approach to Study Design in a Non-Human Primate Model [J].
Anderson, Deirdre E. J. ;
Glynn, Jeremy J. ;
Song, Howard K. ;
Hinds, Monica T. .
PLOS ONE, 2014, 9 (12)
[2]   The Effect of Biomaterials Used for Tissue Regeneration Purposes on Polarization of Macrophages [J].
Boersema, Geesien S. A. ;
Grotenhuis, Nienke ;
Bayon, Yves ;
Lange, Johan F. ;
Bastiaansen-Jenniskens, Yvonne M. .
BIORESEARCH OPEN ACCESS, 2016, 5 (01) :6-14
[3]   Effect of pore size and spacing on neovascularization of a biodegradble shape memory polymer perivascular wrap [J].
Boire, Timothy C. ;
Himmel, Lauren E. ;
Yu, Fang ;
Guth, Christy M. ;
Dollinger, Bryan R. ;
Werfel, Thomas A. ;
Balikov, Daniel A. ;
Duvall, Craig L. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2021, 109 (03) :272-288
[4]   Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials [J].
Brown, Bryan N. ;
Londono, Ricardo ;
Tottey, Stephen ;
Zhang, Li ;
Kukla, Kathryn A. ;
Wolf, Matthew T. ;
Daly, Kerry A. ;
Reing, Janet E. ;
Badylak, Stephen F. .
ACTA BIOMATERIALIA, 2012, 8 (03) :978-987
[5]   Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component [J].
Brown, Bryan N. ;
Valentin, Jolene E. ;
Stewart-Akers, Ann M. ;
McCabe, George P. ;
Badylak, Stephen F. .
BIOMATERIALS, 2009, 30 (08) :1482-1491
[6]  
Contreras MA, 2000, MICROSURG, V20, P15, DOI 10.1002/(SICI)1098-2752(2000)20:1<15::AID-MICR3>3.3.CO
[7]  
2-G
[8]   Physiologic compliance in engineered small-diameter arterial constructs based on an elastomeric substrate [J].
Crapo, Peter M. ;
Wang, Yadong .
BIOMATERIALS, 2010, 31 (07) :1626-1635
[9]   Spontaneous reversal of stenosis in tissue-engineered vascular grafts [J].
Drews, Joseph D. ;
Pepper, Victoria K. ;
Best, Cameron A. ;
Szafron, Jason M. ;
Cheatham, John P. ;
Yates, Andrew R. ;
Hor, Kan N. ;
Zbinden, Jacob C. ;
Chang, Yu-Chun ;
Mirhaidari, Gabriel J. M. ;
Ramachandra, Abhay B. ;
Miyamoto, Shinka ;
Blum, Kevin M. ;
Onwuka, Ekene A. ;
Zakko, Jason ;
Kelly, John ;
Cheatham, Sharon L. ;
King, Nakesha ;
Reinhardt, James W. ;
Sugiura, Tadahisa ;
Miyachi, Hideki ;
Matsuzaki, Yuichi ;
Breuer, Julie ;
Heuer, Eric D. ;
West, T. Aaron ;
Shoji, Toshihiro ;
Berman, Darren ;
Boe, Brian A. ;
Asnes, Jeremy ;
Galantowicz, Mark ;
Matsumura, Goki ;
Hibino, Narutoshi ;
Marsden, Alison L. ;
Pober, Jordan S. ;
Humphrey, Jay D. ;
Shinoka, Toshiharu ;
Breuer, Christopher K. .
SCIENCE TRANSLATIONAL MEDICINE, 2020, 12 (537)
[10]  
Freedman DA, 2004, CELL CYCLE, V3, P811