Study of existence results for fractional functional differential equations involving Riesz-Caputo derivative

被引:6
作者
Tiwari, Pratima [1 ]
Pandey, Rajesh K. [1 ]
Pandey, D. N. [2 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
[2] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttarakhand, India
关键词
Riesz-Caputo fractional derivative; The existence of solution; Kuratowski measure of non-compactness; Nonlinear fractional differential equations; COUPLED QUASI-SOLUTIONS; EVOLUTION-EQUATIONS; INTEGRAL-EQUATIONS; MAXIMUM PRINCIPLE; ITERATIVE METHOD; MILD SOLUTIONS; DIFFUSION;
D O I
10.1007/s41478-024-00728-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Within this work, we look into the existence results for a family of fractional functional differential equations employing the Riesz-Caputo fractional derivative in a Banach space. Fractional calculus techniques, Kuratowski's measure of non-compactness, Carathe '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{e}$$\end{document}odory conditions, and some theorems on fixed points are used to establish existence results. In the end, a few examples are showcased to evince the proficiency of the offered results.
引用
收藏
页码:1929 / 1949
页数:21
相关论文
共 44 条
[1]   Some generalized fractional calculus operators and their applications in integral equations [J].
Agrawal, Om P. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) :700-711
[2]  
Akhmerov R. R., 1992, MEASURES NONCOMPACTN, DOI 10.1007/978-3-0348-5727-7
[3]   Efficient numerical techniques for computing the Riesz fractional-order reaction-diffusion models arising in biology [J].
Alqhtani, Manal ;
Owolabi, Kolade M. ;
Saad, Khaled M. ;
Pindza, Edson .
CHAOS SOLITONS & FRACTALS, 2022, 161
[4]  
[Anonymous], 1993, DELAY DIFFERENTIAL E
[5]  
Arino O., 2007, P NATO ADV STUDY I H, V205
[6]  
Banas J, 1980, Comment. Math. Univ. Carolin, V21, P131
[7]  
Changpin L., 2015, Numerical methods for fractional calculus
[8]   Anti-periodic boundary value problems with Riesz-Caputo derivative [J].
Chen, Fulai ;
Chen, Anping ;
Wu, Xia .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
[9]   Existence results of fractional differential equations with Riesz-Caputo derivative [J].
Chen, Fulai ;
Baleanu, Dumitru ;
Wu, Guo-Cheng .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (16-18) :3411-3425
[10]   CAUCHY PROBLEM FOR STOCHASTIC NON-AUTONOMOUS EVOLUTION EQUATIONS GOVERNED BY NONCOMPACT EVOLUTION FAMILIES [J].
Chen, Pengyu ;
Li, Yongxiang ;
Zhang, Xuping .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (03) :1531-1547