Exploring molecular interactions of sucrose in aqueous potassium clavulanate solutions at different temperatures: volumetric and acoustic approaches

被引:3
作者
Rathi, Meenakshi [1 ]
机构
[1] NSC Sci Coll, RNC Arts, JDB Commerce, Nasik Rd, Nasik 422101, Maharashtra, India
关键词
Potassium clavulanate; Intermolecular interaction; Apparent molar volume; Apparent molar compressibility; Pair-triplet interaction; Hydration number; THIAMINE HYDROCHLORIDE; AMINO-ACIDS; BINARY-MIXTURES; DRUG; WATER; THERMODYNAMICS; AMOXICILLIN; VISCOSITY; CHLORIDE; DENSITY;
D O I
10.1007/s41939-023-00361-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Density and acoustic measurements as a function of temperature and ambient pressure have been used to examine molecular interactions, structural variables, and hydration behaviour in the ternary (potassium clavulanate/sucrose + water) system. Numerous thermodynamic and acoustic parameters, such as apparent molar volume (V2,phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{2,\phi }$$\end{document}) and apparent molar isentropic compressibility (Ks2,phi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Ks}}_{2,\phi } )$$\end{document}; limiting apparent molar volume (V2,phi infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{2,\phi }<^>{\infty }$$\end{document}) and limiting apparent molar isentropic compression (Ks2,phi infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Ks}}_{2,\phi }<^>{\infty }$$\end{document}); and limiting apparent molar volume of transfer (Delta trV2,phi infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta<^>{{{\text{tr}}}} V_{2,\phi }<^>{\infty }$$\end{document}) and isentropic compression of transfer (Delta trKs2,phi infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta<^>{{{\text{tr}}}} {\text{Ks}}_{2,\phi }<^>{\infty }$$\end{document}), are derived from the experimentally measured density and speed of sound. Partial molar expansibility (E phi 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\phi }<^>{0}$$\end{document}), its first-order derivative partial differential E phi 0/ partial differential Tp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\partial E_{\phi }<^>{0} /\partial T} \right)p$$\end{document}, pair-triplet interaction coefficients (VAB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{{{\text{AB}}}}$$\end{document}, KAB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{{{\text{AB}}}}$$\end{document}, VABB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{{{\text{ABB}}}}$$\end{document}, KABB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{{{\text{ABB}}}}$$\end{document}), hydration number (nH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_{{\text{H}}}$$\end{document}), and some of the empirical parameters calculated. The cosphere overlap model is used to understand the values of (Delta trV2,phi infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Delta<^>{{{\text{tr}}}} V_{2,\phi }<^>{\infty } )$$\end{document} and Delta trKs2,phi infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\Delta<^>{{{\text{tr}}}} {\text{Ks}}_{2,\phi }<^>{\infty } } \right)$$\end{document}. The positive values of partial differential E phi 0/ partial differential Tp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\partial E_{\phi }<^>{0} /\partial T} \right)p$$\end{document} indicate the structure-making ability of sucrose in aqueous potassium clavulanate solution, while the partial molar properties suggest the formation of hydrogen bonds in the system. Taken together, these characteristics suggested that the investigated ternary combination possessed substantial solute-solvent interactions at the temperature and composition investigated.
引用
收藏
页码:2717 / 2730
页数:14
相关论文
共 47 条
[1]   Density, viscosity, and refractive index of mono-, di-, and tri-saccharides in aqueous glycine solutions at different temperatures [J].
Ali, Anwar ;
Bidhuri, Priyanka ;
Malik, Nisar Ahmad ;
Uzair, Sahar .
ARABIAN JOURNAL OF CHEMISTRY, 2019, 12 (07) :1684-1694
[2]   Volumetric and 1H NMR spectroscopic studies of saccharides-calcium lactate interactions in aqueous solutions [J].
Amirchand, Khajuria Deepika ;
Kaur, Sandeep ;
Banipal, Tarlok S. ;
Singh, Vickramjeet .
JOURNAL OF MOLECULAR LIQUIDS, 2021, 334
[3]   Probing interactions and hydration behaviour of drug sodium salicylate in aqueous solutions of D-xylose/L-arabinose: Volumetric, acoustic and viscometric approaches [J].
Ankita ;
Nain, Anil Kumar .
JOURNAL OF MOLECULAR LIQUIDS, 2021, 333
[4]   Volumetric and viscometric studies on L-ascorbic acid, nicotinic acid, thiamine hydrochloride and pyridoxine hydrochloride in water at temperatures (288.15-318.15) K and at atmospheric pressure [J].
Banipal, Tarlok S. ;
Singh, Harpreet ;
Banipal, Parampaul K. ;
Singh, Vickramjeet .
THERMOCHIMICA ACTA, 2013, 553 :31-39
[5]   Study of thermodynamic parameters of ternary solutions of polyethylene glycols in aqueous biotin solutions at multiple temperatures [J].
Chakraborty, Nabaparna ;
Juglan, K. C. ;
Kumar, Harsh ;
Singla, Meenu .
JOURNAL OF CHEMICAL THERMODYNAMICS, 2022, 174
[6]   Temperature-dependent thermodynamic and physicochemical studies of glycols in aqueous biotin solutions [J].
Chakraborty, Nabaparna ;
Juglan, K. C. ;
Kumar, Harsh .
JOURNAL OF MOLECULAR LIQUIDS, 2021, 337
[7]   Insights into the temperature and concentration dependent studies of the Anti-diabetic drug in aqueous binary and ternary (water +sucrose) mixtures at body temperature [J].
Chandak, Ankita S. ;
Zodape, Sangesh P. .
CHEMICAL PHYSICS IMPACT, 2021, 3
[8]   Volumetric and viscometric studies of some drugs in aqueous solutions at different temperatures [J].
Dhondge, Sudhakar S. ;
Zodape, Sangesh P. ;
Parwate, Dilip V. .
JOURNAL OF CHEMICAL THERMODYNAMICS, 2012, 48 :207-212
[9]   Molecular interactions of α-amino acids insight into aqueous β-cyclodextrin systems [J].
Ekka, Deepak ;
Roy, Mahendra Nath .
AMINO ACIDS, 2013, 45 (04) :755-777
[10]   Moisture and Shelf Life in Sugar Confections [J].
Ergun, R. ;
Lietha, R. ;
Hartel, R. W. .
CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2010, 50 (02) :162-192