AAV-based CRISPR-Cas9 genome editing: Challenges and engineering opportunities

被引:3
|
作者
Kabadi, Ami M. [1 ]
Mejia-Guerra, Maria Katherine [1 ]
Graef, John D. [1 ]
Khan, Sohrab Z. [1 ]
Walton, Eric M. [1 ]
Wang, Xinzhu [1 ]
Gersbach, Charles A. [1 ,2 ,3 ,4 ]
Potter, Rachael [1 ]
机构
[1] Sarepta Therapeut Inc, Cambridge, MA 02142 USA
[2] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[3] Duke Univ, Ctr Adv Genom Technol, Durham, NC 27708 USA
[4] Duke Univ, Med Ctr, Dept Surg, Durham, NC 27710 USA
关键词
Adeno-associated virus; CRISPR-Cas; Genome editing; Gene therapy; Immune modulation; DIRECTED EVOLUTION; GENE DELIVERY; VECTORS; REVEALS; DNA; VARIANTS; NUCLEAR; HUMANS; MODEL;
D O I
10.1016/j.cobme.2023.100517
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recent innovations in the field of gene therapy have paved the way for advances towards developing genome editing medicines. Despite these steps forward, challenges with viral delivery of genome editing tools persist. Efforts currently underway include developing next-generation genome editors, overcoming adeno-associated virus (AAV) packaging restrictions, improving AAV genome integrity, engineering novel AAV capsids, and minimizing the immune response. This review discusses current challenges in delivering CRISPR-Cas nuclease-based genome editing therapies using AAV and highlights emerging methods to overcome these obstacles. This includes developing smaller payloads and regulatory elements, advancing novel sequencing methods for vector characterization, engineering capsids with enhanced potency, tissue-selectivity, and ability to evade pre-existing antibodies, controlling transgene expression, and minimizing the immune response to Cas proteins.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] CRISPR-Cas9 genome editing for cancer immunotherapy: opportunities and challenges
    Chen, Ming
    Xu, Jiang
    Zhou, Yang
    Zhang, Silin
    Zhu, Di
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2020, 19 (03) : 183 - 190
  • [2] Challenges and advances of CRISPR-Cas9 genome editing in therapeutics
    Stellos, Konstantinos
    Musunuru, Kiran
    CARDIOVASCULAR RESEARCH, 2019, 115 (02) : E12 - E14
  • [3] Optimization of genome editing through CRISPR-Cas9 engineering
    Zhang, Jian-Hua
    Adikaram, Poorni
    Pandey, Mritunjay
    Genis, Allison
    Simonds, William F.
    BIOENGINEERED, 2016, 7 (03) : 166 - 174
  • [4] CRISPR-Cas9 Based Bacteriophage Genome Editing
    Zhang, Xueli
    Zhang, Chaohui
    Liang, Caijiao
    Li, Bizhou
    Meng, Fanmei
    Ai, Yuncan
    MICROBIOLOGY SPECTRUM, 2022, 10 (04):
  • [5] CRISPR-Cas9 based plant genome editing: Significance, opportunities and recent advances
    Soda, Neelam
    Verma, Lokesh
    Giri, Jitender
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 131 : 2 - 11
  • [6] In Vivo Genome Engineering With AAV Vector Carrying CRISPR-Cas9 System
    Cong, Le
    Yan, Winston X.
    Ran, F. Ann
    Zetsche, Bernd
    Zhang, Feng
    MOLECULAR THERAPY, 2014, 22 : S214 - S214
  • [7] Delivery challenges for CRISPR-Cas9 genome editing for Duchenne muscular dystrophy
    Padmaswari, Made Harumi
    Agrawal, Shilpi
    Jia, Mary S.
    Ivy, Allie
    Maxenberger, Daniel A.
    Burcham, Landon A.
    Nelson, Christopher E.
    BIOPHYSICS REVIEWS, 2023, 4 (01):
  • [8] Development and Applications of CRISPR-Cas9 for Genome Editing
    Zhang, Feng
    HUMAN GENE THERAPY, 2014, 25 (11) : A10 - A10
  • [9] The Implications of CRISPR-Cas9 Genome Editing for IR
    Perkons, Nicholas R.
    Sheth, Rahul
    Ackerman, Daniel
    Chen, James
    Saleh, Kamiel
    Hunt, Stephen J.
    Nadolski, Gregory J.
    Shi, Junwei
    Gade, Terence P.
    JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2018, 29 (09) : 1264 - 1267
  • [10] CRISPR-Cas9 Mediated Genome Editing in Drosophila
    Peng, Ping
    Wang, Xia
    Shen, Da
    Sun, Jin
    Jia, Yu
    Xu, Rong-Gang
    Zhu, Li-Fei
    Ni, Jian-Quan
    BIO-PROTOCOL, 2019, 9 (02):