Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries

被引:101
作者
Cao, Jiaqi [1 ]
Shi, Yuansheng [1 ]
Gao, Aosong [2 ]
Du, Guangyuan [1 ]
Dilxat, Muhtar [1 ]
Zhang, Yongfei [1 ]
Cai, Mohang [1 ]
Qian, Guoyu [1 ]
Lu, Xueyi [1 ]
Xie, Fangyan [2 ]
Sun, Yang [1 ]
Lu, Xia [1 ]
机构
[1] Sun Yat Sen Univ, Sch Mat, Shenzhen 518107, Peoples R China
[2] Sun Yat Sen Univ, Instrumental Anal & Res Ctr, Guangzhou 510275, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
ELASTIC BAND METHOD; LITHIUM-METAL; ELECTROLYTE; DEPOSITION; INTERPHASE; INSIGHTS; PHASE;
D O I
10.1038/s41467-024-45613-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Exploiting thin Li metal anode is essential for high-energy-density battery, but is severely plagued by the poor processability of Li, as well as the uncontrollable Li plating/stripping behaviors and Li/electrolyte interface. Herein, a thickness/capacity-adjustable thin alloy-type Li/LiZn@Cu anode is fabricated for high-energy-density Li metal batteries. The as-formed lithophilic LiZn alloy in Li/LiZn@Cu anode can effectively regulate Li plating/stripping and stabilize the Li/electrolyte interface to deliver the hierarchical Li electrochemistry. Upon charging, the Li/LiZn@Cu anode firstly acts as Li source for homogeneous Li extraction. At the end of charging, the de-alloy of LiZn nanostructures further supplements the Li extraction, actually playing the Li compensation role in battery cycling. While upon discharging, the LiZn alloy forms just at the beginning, thereby regulating the following Li homogeneous deposition. The reversibility of such an interesting process is undoubtedly verified from the electrochemistry and in-situ XRD characterization. This work sheds light on the facile fabrication of practical Li metal anodes and useful Li compensation materials for high-energy-density Li metal batteries. Utilizing an ultra-thin Li anode with a thickness below 50 mu m is crucial for enhancing the energy density of batteries. Here, the authors develop a finely tunable, thin alloy-based Li anode that features a hierarchical Li electrochemistry, enabling stable cycling and superior energy density in Li metal batteries.
引用
收藏
页数:13
相关论文
共 67 条
[1]   Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J].
Adams, Brian D. ;
Zheng, Jianming ;
Ren, Xiaodi ;
Xu, Wu ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[2]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[3]   Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry [J].
Bartel, Christopher J. ;
Millican, Samantha L. ;
Deml, Ann M. ;
Rumptz, John R. ;
Tumas, William ;
Weimer, Alan W. ;
Lany, Stephan ;
Stevanovic, Vladan ;
Musgrave, Charles B. ;
Holder, Aaron M. .
NATURE COMMUNICATIONS, 2018, 9
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Rationally optimized carbon fiber cloth as lithiophilic host for highly stable Li metal anodes [J].
Cao, J. ;
Xie, Y. ;
Li, W. ;
Wang, X. ;
Yang, Y. ;
Zhang, Q. ;
Guo, J. ;
Yang, C. ;
Cheng, S. ;
Zhang, C. ;
Wang, K. .
MATERIALS TODAY ENERGY, 2021, 20
[6]   Advanced Composite Lithium Metal Anodes with 3D Frameworks: Preloading Strategies, Interfacial Optimization, and Perspectives [J].
Cao, Jiaqi ;
Qian, Guoyu ;
Lu, Xueyi ;
Lu, Xia .
SMALL, 2023, 19 (10)
[7]   Achieving Uniform Li Plating/Stripping at Ultrahigh Currents and Capacities by Optimizing 3D Nucleation Sites and Li2Se-Enriched SEI [J].
Cao, Jiaqi ;
Xie, Yonghui ;
Yang, Yang ;
Wang, Xinghui ;
Li, Wangyang ;
Zhang, Qiaoli ;
Ma, Shun ;
Cheng, Shuying ;
Lu, Bingan .
ADVANCED SCIENCE, 2022, 9 (09)
[8]   Stability of solid electrolyte interphases and calendar life of lithium metal batteries [J].
Cao, Xia ;
Xu, Yaobin ;
Zou, Lianfeng ;
Bao, Jie ;
Chen, Yunxiang ;
Matthews, Bethany E. ;
Hu, Jiangtao ;
He, Xinzi ;
Engelhard, Mark H. ;
Niu, Chaojiang ;
Arey, Bruce W. ;
Wang, Chunsheng ;
Xiao, Jie ;
Liu, Jun ;
Wang, Chongmin ;
Xu, Wu ;
Zhang, Ji-Guang .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (04) :1548-1559
[9]   Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries [J].
Chen, Hao ;
Yang, Yufei ;
Boyle, David T. ;
Jeong, You Kyeong ;
Xu, Rong ;
de Vasconcelos, Luize Scalco ;
Huang, Zhuojun ;
Wang, Hansen ;
Wang, Hongxia ;
Huang, Wenxiao ;
Li, Huiqiao ;
Wang, Jiangyan ;
Gu, Hanke ;
Matsumoto, Ryuhei ;
Motohashi, Kazunari ;
Nakayama, Yuri ;
Zhao, Kejie ;
Cui, Yi .
NATURE ENERGY, 2021, 6 (08) :790-798
[10]   Li-Zn Overlayer to Facilitate Uniform Lithium Deposition for Lithium Metal Batteries [J].
Chen, Qiulin ;
Li, Hao ;
Meyerson, Melissa L. ;
Rodriguez, Rodrigo ;
Kawashima, Kenta ;
Weeks, Jason A. ;
Sun, Hohyun ;
Xie, Qingshui ;
Lin, Jie ;
Henkelman, Graeme ;
Heller, Adam ;
Peng, Dong-Liang ;
Mullins, C. Buddie .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (08) :9985-9993