Properties of Hyper-Elastic-Graded Triply Periodic Minimal Surfaces

被引:5
作者
Haney, Christopher W. [1 ]
Siller, Hector R. [1 ]
机构
[1] Univ North Texas, Dept Mech Engn, 3940 N Elm Str, Denton, TX 76207 USA
关键词
hyper-elastic; lattice structures; triply periodic minimal surfaces; functionally graded; energy absorption; cyclic compression; DEFORMATION; SIMULATION; DESIGN;
D O I
10.3390/polym15234475
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The mechanical behaviors of three distinct lattice structures-Diamond, Gyroid, and Schwarz-synthesized through vat polymerization, were meticulously analyzed. This study aimed to elucidate the intricacies of these structures in terms of their stress-strain responses, energy absorption, and recovery characteristics. Utilizing the described experiments and analytical approaches, it was discerned, via the described experimental and analytical procedure, that the AM lattices showcased mechanical properties and stress-strain behaviors that notably surpassed theoretical predictions, pointing to substantial disparities between conventional models and experimental outcomes. The Diamond lattice displayed superior stiffness with higher average loading and unloading moduli and heightened energy absorption and dissipation rates, followed by the Gyroid and Schwarz lattices. The Schwarz lattice showed the most consistent mechanical response, while the Diamond and Gyroid showed capabilities of reaching larger strains and stresses. All uniaxial cyclic compressive tests were performed at room temperature with no dwell times. The efficacy of hyper-elastic-graded models significantly outperformed projections offered by traditional Ashby-Gibson models, emphasizing the need for more refined models to accurately delineate the behaviors of additively manufactured lattices in advanced engineering applications.
引用
收藏
页数:18
相关论文
共 40 条
[1]   Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties [J].
Al-Ketan, Oraib ;
Lee, Dong-Wook ;
Rowshan, Reza ;
Abu Al-Rub, Rashid K. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2020, 102
[2]   Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices [J].
Al-Ketan, Oraib ;
Abu Al-Rub, Rashid K. .
ADVANCED ENGINEERING MATERIALS, 2019, 21 (10)
[3]   Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials [J].
Al-Ketan, Oraib ;
Rowshan, Reza ;
Abu Al-Rub, Rashid K. .
ADDITIVE MANUFACTURING, 2018, 19 :167-183
[4]  
[Anonymous], 2021, ASTM 2240
[5]  
[Anonymous], 2020, ASTM D624-00
[6]  
[Anonymous], 2010, ASTM D395-03
[7]  
[Anonymous], 2017, ASTM D412-06
[8]   An Overview of Novel Actuators for Soft Robotics [J].
Boyraz, Pinar ;
Runge, Gundula ;
Raatz, Annika .
ACTUATORS, 2018, 7 (03)
[9]   Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges [J].
Chen, Liang-Yu ;
Liang, Shun-Xing ;
Liu, Yujing ;
Zhang, Lai-Chang .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2021, 146
[10]   3D Printed Multifunctional, Hyperelastic Silicone Rubber Foam [J].
Chen, Qiyi ;
Zhao, Jiayu ;
Ren, Jingbo ;
Rong, Lihan ;
Cao, Peng-Fei ;
Advincula, Rigoberto C. .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (23)