Wavelets direct method for solving volterra integral-algebraic equations

被引:1
作者
Sohrabi, S. [1 ]
机构
[1] Urmia Univ, Fac Sci, Dept Math, Orumiyeh 5756151818, Iran
关键词
Integral-algebraic equations; Legendre wavelets; Operational matrix; Error estimate; NUMERICAL-SOLUTION; COLLOCATION METHOD; SYSTEMS;
D O I
10.1007/s13370-023-01135-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the numerical solutions for Volterra type integral-algebraic equations (IAEs) via a direct method using Legendre wavelets (LWs). Using the operational matrix associated with Legendre wavelets the problem is transformed to a linear system of algebraic equations. This approach does not use any variable transformations, so all calculations can be easily implemented. Convergence rate and numerical examples are presented to illustrate the efficiency and applicability of the method.
引用
收藏
页数:16
相关论文
共 50 条
[41]   Fast and accurate numerical algorithm for solving stochastic Itô-Volterra integral equations [J].
Zeghdane, Rebiha .
NUMERICAL ALGORITHMS, 2025, 99 (02) :809-835
[42]   Two-dimensional wavelets operational method for solving Volterra weakly singular partial integro-differential equations [J].
Ray, S. Saha ;
Behera, S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 366
[43]   A spectral iterative method for solving nonlinear singular Volterra integral equations of Abel type [J].
Shoja, A. ;
Vahidi, A. R. ;
Babolian, E. .
APPLIED NUMERICAL MATHEMATICS, 2017, 112 :79-90
[44]   AN OPERATIONAL HAAR WAVELET METHOD FOR SOLVING FRACTIONAL VOLTERRA INTEGRAL EQUATIONS [J].
Saeedi, Habibollah ;
Mollahasani, Nasibeh ;
Moghadam, Mahmoud Mohseni ;
Chuev, Gennady N. .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2011, 21 (03) :535-547
[45]   Rationalized Haar functions method for solving Fredholm and Volterra integral equations [J].
Reihani, M. H. ;
Abadi, Z. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (01) :12-20
[46]   Lagrange collocation method for solving Volterra-Fredholm integral equations [J].
Wang, Keyan ;
Wang, Qisheng .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (21) :10434-10440
[47]   An Efficient Method Based on Framelets for Solving Fractional Volterra Integral Equations [J].
Mohammad, Mutaz ;
Trounev, Alexander ;
Cattani, Carlo .
ENTROPY, 2020, 22 (08)
[48]   Application of Legendre Wavelets for Solving a Class of Functional Integral Equations [J].
Felahat, Marziyeh ;
Moghadam, Mahmoud Mohseni ;
Askarihemmat, Ata Allah .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A3) :1089-1100
[49]   On the convergence of multistep collocation methods for integral-algebraic equations of index 1 [J].
Tingting Zhang ;
Hui Liang ;
Shijie Zhang .
Computational and Applied Mathematics, 2020, 39
[50]   A computational approach for solving fractional Volterra integral equations based on two-dimensional Haar wavelet method [J].
Abdollahi, Zohreh ;
Moghadam, M. Mohseni ;
Saeedi, H. ;
Ebadi, M. J. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (07) :1488-1504